Final Documentation:

Matthew Buckle
Mario Chiu
Jeffrey Spieldenner
Clement Suhendra

Table of Contents

Introduction
1. The Problem
2. System Requirements
3. High Level Description

Detailed Project Description
1. System Theory of Operation
2. System Block Diagram
3. The Microcontroller Board Subsystem
4. The H-Bridge Subsystem

System Integration Testing
1. How Did We Test It?
2. Did Our Testing Verify the Design Requirements?

Users / Installation Manual
1. Installation
2. Setup
3. How Do I Know That It Is Working?
4. Hovercrafting for Dummies

Conclusion

Appendix
1. The Gantt Chart
2. Hardware
3. Software
4. Data Sheets

Introduction

(1) The Problem

The overall goal of this project was to design and construct a swarm of three
hovercrafts which would advance along a predefined path of four waypoint beacons. The
swarm would progress by following a leader hovercraft, which would be responsible for
following the waypoints, and avoiding collisions with each other. Multiple questions
needed to be pondered before progressing with the project: How would the hovercrafts
recognize the waypoint beacons? How would they navigate towards the beacons? How
would they know when they reached a given beacon? What would be used as waypoints?
The further we delved into these questions, the more complex our system became.

Two main ideas were discussed to solve the problem of waypoint signal
recognition and control of the hovercraft: using a system of two Telos motes on either
side of the hovercraft in a Master and Slave combination sending a signal to a series of
relays which would control the thrust motors, or using a system of two Chipcon receivers
attached to a microcontroller board with an H-bridge controlling each motor. Both of
these strategies have their positives and negatives. The Telos motes are relatively simple
to use, but are expensive and can only control the hovercraft motors via a series of
switches (thus limiting the ways in which the hovercraft can be controlled). The Chipcon
receivers and microcontroller system is inexpensive and allows more versatility in
controlling the motors of the hovercraft, but learning how to use a microcontroller is slow
and tedious work. After becoming frustrated with the control limitations offered by the
Telos Mote system, we decided to move forward with the customizable options that
microcontroller system offered.

Despite the fact that we abandoned the idea of using the Telos motes as the
receivers on the hovercraft that would be used to control the thrust motors, we decided to
continue to use them as the waypoint beacons from which the hovercraft system would
receive its various signals. Although the motes were not the ideal instruments to control
the hovercraft due to the limitations mentioned above, they had multiple properties which
made them perfectly suited to be the waypoint beacons. The ease of (re)programming the
strength and period of the signals being sent, their small size, and the LEDs embedded on
the board (which we could program to give a visual of when a given signal was being
transmitted) were all properties which would prove to be beneficial as we began to test
our system.

(2) System Requirements

The hovercraft system must...

be rigid and stable

be able to track its target

be able to determine if the beacon is to its right or to its left
not collide with other hovercrafts or waypoint beacons

be able to differentiate between attract and repel signals
recognize when it has reached the target beacon

know what to do if the next beacon’s signal is not in range
be able to vary the speed of its thrust motors

The hovercraft system must be rigid and stable

Any system that can be expected to perform at its peak in an outdoor setting must
be able to withstand the wear and tear that such a setting can be expected to produce. As
such, care had to be taken to ensure that our hovercraft system was durable enough to be
able to maintain its functionality in a less than ideal setting, and yet still be light enough
to be able to hover well.

There are two main components that make up the body of a hovercraft: the chassis
and the skirt. Even with the most careful of planning, the hovercraft system will
occasional collide into foreign objects, thus its chassis must be able to withstand these
impacts and yet still continue on its mission. Even though it is hovering off the ground,
the skirt will still occasionally come into contact with a course surface, thus it must not
be able to tear easily. Given these requirements, we decided to create the chassis out of
corrugated plastic sheets, a material that is very rigid and yet still lightweight. Our first
skirts were made out of a lightweight vinyl material; however, we were unable to find the
same product to produce more skirts. Due to this, we created our other skirts out of heavy
duty garbage bags, which performed similarly to the vinyl skirts when attached to the
hovercrafts.

The hovercraft system must be able to track its target

Whether it is the leader tracking a waypoint beacon, or the pursuers following the
leader, the hovercrafts must know what their specific target is and must be able to move
towards it. To achieve this goal, we implemented an “attractive” signal in the waypoint
beacons and in the leader’s Chipcons that the hovercrafts could receive and track.

The hovercraft system must be able to determine if the beacon is to its right or to its left

Given that the hovercraft is expected to be an autonomous system, it must be able
to steer itself in the direction of the targeted waypoint beacon or leader hovercraft. The
first step in achieving this is determining from which direction the signal is coming. This
was accomplished by installing a Chipcon receiver on each side of the hovercraft and by
placing a parabolic aluminum shield behind each Chipcon. These aluminum shields serve
two purposes: to focus the signal on the receiver that is closest to the beacon, and to
weaken the signal received by the beacon that is further away from the beacon (as the

signal has to pass through at least one shield, depending on the positioning of the beacon
in relation to the hovercraft).

The hovercraft system must not collide with other hovercrafts or waypoint beacons

For any swarm to operate at its peak efficiency, care must be taken to ensure that
the individuals who make up the swarm avoid coming into unwanted physical contact
with each other and with their targets. As such, we installed “repellant” signals' in the
waypoint beacons and in the all of hovercrafts’ Chipcons. After receiving these signals,
the hovercrafts were programmed to take evasive action in order to avoid a collision.

The hovercraft system must be able to differentiate between attract and repel signals

Since there could be two distinct and opposite signals being received by the
Chipcon at any given time, the hovercraft system must be able to differentiate between
them. To achieve this, a variable called “beacon_type” was placed into the packet’.
Whenever a signal is received by a Chipcon, it immediately determines whether the
beacon type is attractive or repellant, and makes its control decisions based upon this
determination.

The hovercraft system must recognize when it has reached the target beacon

For the hovercraft swarm to progress from beacon to beacon, the leader must be
able to recognize when it has successfully approached its current target beacon. This is
accomplished through the use of the waypoint beacons’ repellant signals as well as the
waypoint beacons’ individual identification numbers. The intelligence of the leader
hovercraft starts by looking for beacon number one. When it receives a user-defined
number of repel signals from this beacon, it “knows” that it has successfully reached the
target, and moves on to the next waypoint.

The hovercraft system must know what to do if the next beacon’s signal is not in range

As mentioned above, when the leader hovercraft reaches the repel signal of the
target beacon, it immediately begins to look for the next waypoint. However, what if the
next waypoint’s signal is not in range? In this case, the hovercraft will remain at its
current target beacon. When the repel signal is in range, it will move away from the
beacon, and when the repel signal is out of range, it will move back towards it. One
possible addition that can be made is to have the hovercraft look for any attractive signal
in range and react accordingly instead of moving around a single beacon.

The hovercraft system must be able to vary the speed of its thrust motors

! The repellant signal is significantly weaker than the attractive signal.

? The “packet” is the data transmitted by the Telos waypoint beacons and the Chipcon. Data in the packet
includes the beacon_id (the number of the beacon), Beacon_type (attractive or repellant), and a timestamp
(used to ensure that the signal being compared by the right and left Chipcon on any given hovercraft was
sent at the same time).

One of the major benefits of using the Chipcon / Microcontroller / H-bridge
subsystem versus the Telos / Switch subsystem is the more fine-tuned control that is
possible. The motors can move forward, backwards, and have varying speeds via
relatively simple software commands. By taking advantage of the speed control offered
by the H-bridges, we can have the hovercraft move faster while far from the beacon, and
slower as it approaches. This level of speed control will allow the hovercraft to maintain
stability” while maneuvering around the target beacon.

(3) High Level Description

The successful completion of our project had the following goals at the time of
conception:

Waypoint navigation system

Three-point control

Creation of an H-bridge to allow for linear control

Navigation of waypoint system by two independent hovercrafts

Obtaining materials for and construction of two more hovercrafts

Navigation of waypoint system by four hovercrafts working as a swarm

Transfer of system from one which uses Telos motes to one that utilizes Zigbee
transmitters and microcontrollers

e Possible change from two thrust fan system to a single fan with a controllable
rudder

The following will describes the goals individually and includes a short assessment of the
goal.

Waypoint Navigation System

The purpose of this goal was to allow a single hovercraft to traverse a series of
over two transmitting beacons (waypoints). As all of the beacons send their signals
throughout the test, the hovercraft needs to be able to recognize the signals sent by the
current waypoint that it is looking for. It will know when it has reached the waypoint
when it receives a repel signal, and then will begin to look for the next one. The process
starts over from the beginning once the final waypoint has been reached. We successfully
completed this goal.

3 Since the hovercraft is a low friction system, it loses less momentum when the thrust is turned off. Thus,
while turning at high speeds, the hovercraft will make very wide turns — not what we want when it is
approaching the target beacon.

Three Point Control

In this goal, the control of the hovercraft was be improved. Previously, the control
scheme was a relatively simple “Bang-bang” control, in which the hovercraft turns in the
direction of whichever receiving beacon (Master on the left side, Slave on the right side)
receives a stronger signal from the waypoint transmitter. In three point control, the both
the left and the right thrust fans will be fired almost simultaneously (the current circuitry
does not allow for both to be on at the same time) if the transmitter is directly in front of
the hovercraft. This goal was superseded in importance by the H-Bridge control,
discussed below.

Creation of H-bridge to Allow for Linear Control

Through the creation of an H-bridge circuit, we are able to vastly improve the
control of the hovercrafts. Rather than simply having Bang-bang or Three-point control
(which have obvious limitations), the hovercrafts will be able to head towards the beacon
with a much more control, less oscillations in motion and in a tunable manner. We
successfully completed this goal.

Navigation of Waypoint System by Two Independent Hovercrafts

To allow two (or more) independent hovercrafts to successfully navigate the
waypoints, we must ensure that no collisions take place between them as they move
around the testing area. In order to prevent this, we installed a repellant beacon in one (or
both) of the motes on the hovercraft which will allow other hovercrafts to recognize when
it is approaching another hovercraft and thus avoid colliding with it. This goal works but
not reliably so we will be leaving out for our demonstration.

Obtaining Materials for and Construction of Two More Hovercrafts

In order to proceed with further testing, it was necessary to build more
hovercrafts. As our previous source for materials (www.hovercraftmodels.com) has
temporarily gone out of business, we must use other suppliers to provide us with the
individual materials needed to construct them. We successfully found our materials for
the hovercrafts we built.

Navigation of Waypoint System by Four Hovercrafts Working as a Swarm

The end of this goal was to have four hovercrafts traversing the waypoint system
in unison. To achieve this, we needed to designate one hovercraft as the leader, and have
the other three follow it from beacon to beacon. An attractive signal sent from one of the
motes on the leader will allow the other three to successfully follow it. This goal ended
up being outside the scope of our project as demanded by our customer Dr. Bauer.

Replacement of Telos motes with Zigbee Transmitters and Microcontrollers

One important goal for this project was to remove the reliance on Telos motes,
which are very expensive and have shown to be unreliable. The replacement was to be a
microcontroller board with a couple of Zigbee transmitters. We accomplished this by
creating a board with a PIC18F4620 microcontroller and two CC2420 transceiver chips.

Implementation of a Single Thrust Fan / Rudder Combination

With the implementation of an H-bridge, it is possible to exchange our current
thrust fan configuration with one that can more properly utilize the benefits of the H-
bridge. By limiting the hovercraft to one thrust fan, the longevity of the battery should

improve. However, during our project we decided that this had no obvious benefits to the
performance of the system, given that battery life was no longer an issue.

Detailed Project Description

(1) System Theory of Operation

The overall Autonomous Hovercraft System is made up of four separate, but
integrated, subsystems: the microcontroller board, the H-bridge, the hovercraft, and the
waypoint beacons. Each of these four subsystems provides a vital role in the success of
the Autonomous Hovercraft System. The microcontroller board contains both Chipcon
transmitters, which are responsible for receiving packets from the beacons, and the
microcontroller, which is responsible for taking the data received by both Chipcons,
making control decisions based upon this information, and sending these control
decisions to the two H-bridges. The H-bridges take the command sent by the
microcontroller and directly manipulate the speed and direction of the two thrust fans.
The hovercraft houses the above two subsystems, as well as the two thrust motors and the
lift motor. The beacon subsystem is responsible for sending the signals that the
autonomous hovercraft is tracking. While the complexity of each of the four subsystems
is not the same, the success of the entire project is reliant on smooth transitions between
each of them.

The entire Autonomous Hovercraft System begins with the beacon subsystem.
Each beacon has three key components: the period”, the attractive signal strength, and the
repellant signal strength’. The smaller the time the period is, the more exact the
Autonomous Hovercraft System can be in tracking the target beacon. If the period is too
small, however, and there are too many beacons in range sending signals, the airwaves
can become cluttered and the Chipcons can lose packets. If there are few signals being
sent in the immediate area, a period of 100 ms works well, but if it is a more complex
system of beacons and hovercrafts, a period of 200 or 250 ms is more appropriate.

The hovercraft subsystem is responsible for housing the microcontroller and H-
bridge subsystems, as well as the thrust and lift motors. The body consists of corrugated
plastic, a strong but lightweight material that is easy to cut and shape into the pieces that
are needed. The skirt can either be made out of a lightweight vinyl material or heavy duty
trash bags, either work equally well. The microcontroller board is mounted in a slit
towards the front of the hovercraft chassis: the microcontroller itself and most of the
circuitry are hidden inside of the body of the hovercraft, while the two Chipcon boards
and their respective aluminum shielding are exposed on the exterior. The H-bridges, on
the other hand, are more towards the back the hovercraft. Like the circuitry of the

* The period value is inputted in milliseconds
> Signal strength values are inputted as integers ranging from 0 (weakest) to 31 (strongest).

microcontroller board, they are hidden inside the body of the hovercraft. All that is
visible are the wires that extend from the H-bridges to the respective thrust motors that
they control, located on a platform raised about the body. The lift fan is also located
inside the body, in between the microcontroller board and the H-bridges.

The microcontroller subsystem does the brunt of the work of the Autonomous
Hovercraft System. With dimensions of 2.25” by 127, it is long enough so that both of the
Chipcon receivers and their aluminum shielding can protrude from the body of the
hovercraft, while the remainder of the circuitry remains comfortably inside. When a
beacon transmits a signal, both Chipcon receivers obtain the packet, and an interrupt is
fired. When this occurs, the microcontroller retrieves the data (beacon type, beacon id,
timestamp, and RSSI®) from both of the packets, decides whether the hovercraft should
move towards or away from the beacon depending on the strength of the repel signal
received, decides which direction to turn by comparing the RSSI values of both of the
Chipcons, and, if the RSSI values are very close (plus or minus 2 dbm) decides how fast
to move based upon the strength of the RSSI value.

The H-bridge is the final subsystem of the Autonomous Hovercraft System. After
deciding on the direction and speed of the hovercraft, the microcontroller calls a function
and brings the H-bridge into play. The H-bridge, mounted in the rear of the body of the
hovercraft, receives the commands sent by the microcontroller and directly controls the
movement (forward, reverse, or stopped) and speed (via the duty cycle) of its specific
motor. The hovercraft moves in the direction specified by both of the H-bridges, and the
entire process is repeated as the next set of packets is received by the Chipcons.

% Signal strength of the packet

10

(2) System Block Diagram

Block Diagram of the Leader Hovercraft

A 4

Leader Hovercraft

A

receives a packet from the
If (Repel signal from beacpn target beacon

> threshold)

ounter = Counter Threshold

ounter < Counter Threshold

Yes

11

Else if (Attractive signal
received from target
beacon)

Far Close

Block Diagram of the Follower Hovercrafts

Follower
Hovercraft
receives a packet

A 4

Else if (Attractive

If (Repel signal
from beacon >

Else if (Repel signal from
threshold) leader > threshold)

(3) The Microcontroller Board Subsystem

The microcontroller used in our board was Microchip’s PIC18F4620. We chose
this microcontroller because of our familiarity with it, resulting from the first semester
Senior Design class and the tasks we carried out in the class. Additionally, it has 35
input/output pins which we found to be fitting under the design we were pursuing. It is
connected to an external 10 MHz crystal oscillator that provides the clock timing.

The functionality of the board includes having a serial interface which we use to
communicate to the computer via the HyperTerminal program. This is meant mostly for
troubleshooting and testing. The board also has an LCD display which is also meant for
troubleshooting and testing, especially in a testing environment where connecting the
board to a computer is not feasible. For the radio communications we use two CC2420,
by Chipcon, and interface to them via the SPI functionality of the microcontroller. The
CC2420 communicate via Zigbee (IEEE 802.15.4) at the 2.4 GHz band. The
microcontroller also interfaces with the two H-bridges that drive the thrust motor on the
hovercraft. Below is a schematic of what the pin connections look like on the board itself.
This diagram may come in handy when troubleshooting using a digital analyzer or a
scope.

12

JP1

A0 |HB1 FAULT GND
Al |HB1 LONG | LCD EO

A2 |HB1 RESET PRGMR CCA(R)[__B7

A3 |HB1 PHASE PRGMR CCA(L)| _B6

A4 |HB2 FAULT HB2 PHASE| _B5

A5 |HB2 LONG FIFO RIGHT[B4

A6 |CLK LIFT FAN B3

A7 __|CLK FIFOP RIGHT[B2

V3.3 FIFO LEFT| Bl

GND FIFOP LEFT[B0 |IP2
JP3

CO__ |HB2 RESET GND
CL__|PwM HB1-EN SERIAL INTERFACE[_ E2
c2__|PwM HB2-EN LCD D7
C3__|sPI SCLK LCD D6
C4__|sPI SO LCD D5

C5 SPI Sl pController LCD D4

C6 _ |SERIAL INTERFACE CSN RIGHT| D3

C7 __|SERIAL INTERFACE CSN LEFT| D2
El__|LcD VREG BOTH|[D1

GND RESET BOTH[DO |JP4

Microcontroller and Code

The microcontroller is programmed via an external programmer, provided by Dr.
Schafer, which loads all the code into the flash memory in the microcontroller. We used
the SourceBoost software to code, compile and link our code and Microchip software is
used to program the board. Our board is programmed in the same manner as the board
use by Dr. Schafer in his Senior Design class. All the necessary software is available in
all the computers found in the learning center.

Our code is structured so that we have a main file and several libraries that the
main file refers to. Our main file is called hovercraft.c and it contains the algorithm that
we want the hovercraft to run, and anything directly related to it. EESDIib.c contains all
the routines that deal with the serial interface and the LCD display. Our version of this
file is built upon the version provided by Dr. Schafer for the Senior Design class, but
most of the serial interface code was written by Team Calvin. Hbridelib.c contains all the
functions used to control both H-bridges. Both PWM and pin settings for the H-Bridges
are defined here and speed and directional control happens with the functions included in
this file. cc2420lib.c contains all the functions that deal with the configuration and use of
the CC2420 transceiver chips. It also contains the code that deals with setting up the SPI
in master mode to and to use this interface. cc2420.h contains all the definitions used in
the c file, including definitions obtained from the CC2420 datasheet.

In order to find the correct settings for a microcontroller function, be it interrupts,
timers, SPI interface or I/O the first step is exploring the PIC18F4620 datasheet. All the
information necessary to set up any capability is found there and the simplest way to do
this is by first looking for a particular function and finding a table like the example

13

below. This table list all the registers associated with the SPI interface, and it serves as a
guide to keep exploring the datasheet to configure the capability correctly.

TABLE 17-2: REGISTERS ASSOCIATED WITH SPI™ OPERATION

Reset

Mame Bit 7 Bit &6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 Bit 0 Values

on page
IMTCOM GIEASIEH |PEIEFGIEL | TMRIIE | INTOIE REIE TMRIOIF INTOIF REIF 48
PIR1 PSPIF ADIF RCIF TXIF SS5PIF CCP1IF | TMRZIF | TMRI1IF 52
PIE1 PSPIEM ADIE RCIE THIE SERIE CCPMIE | TMR2ZIE | TMR1IE 52
IPR1 pspipt! ADIP RCIF THIP SS5FIP CCP1IP | TMRZIP | TMR1IP a2
TRISA TRISATIE [TRISAER) |PORTA Data Direclion Control Register 52
TRISC PORTC Data Direction Control Register 52
SSPBUF S5P Receive Buffer/Tranamit Register a0
SSPCON1 WCOL SSPOV SEPEN CKP S5PM3 | SSPM2 SEPMA S5PMD =0
SSPSTAT SMP CKE DiA] s RV UA BF 50

Legend: Shaded cells are not used by the MSSP in 5P mode.
Hote 1: These bits are unimplementsd on 28-pin devices and read as ‘o’

2: PORTA<T:G= and their direction bits are individually configured as port pins based on various primary
oscillator modes. When disabled, these bits read as ‘o',

A few important considerations addressed in the code setting up interrupts
triggered by timers and by certain I/O pins, configuring all the pins as inputs or outputs as
necessary, obtaining a PWM signal with a variable duty-cycle and configuring the SPI
and serial interfaces used in by other devices.

SPI Interface

The Serial Peripheral Interface is a type of communications interface that is used
by the CC2420 and that the PIC18F4620 has capability of handling. It works under a
Master/Slave configuration where the Master initiates the communications and the slave
responds to these prompts. The communication is handled by four I/O pins: serial clock
(SCK), serial output (SO), serial input (SI) and a chip select (CSN). The clock is used to
synchronize the two devices involved, the input and output transmit the bits and the chip
select activates the slave and prompts the communication to take place. Below is a
diagram of how the SPI works in the PIC18F4620. In our board both CC2420s interface
with the microcontroller via the SPI, CSN pins are enabled-low.

14

FIGURE 17-2: SPI™ MASTER/SLAVE CONNECTION

——

MO = DDxxh

ZP! Master S5PM3:55

Serial Input Buffer
(SSFBUF)

Serial Input Buffer
(SSPBUF)

Shift Register
copo

Iab—aﬂ:l

Shift Register

(SSPSR)

__

As shown in the diagram above, all SPI communications are handled by the
SSPBUF register. All messages to be sent are to be loaded here and all messages received
are read here as well. As soon as one byte is sent out from the SSPBUF, the slave loads
another byte into the SSPBUF. This byte can either be an acknowledgement of
communication or a piece of data, depending on the device and what is sent to it.

CC2420

The CC2420 by Chipcon is a single chip ZigBee system compliant with the IEEE
802.15.4 set of standards. It is built for low power, low voltage and low data rate wireless
applications. As mentioned earlier, it interfaces with the microcontroller via SPI and we
felt that it would be easier to interface with this chip than with an alternative that used a

serial interface. SPI timing considerations are well illustrated and addressed in the
CC2420 datasheet.

The most basic commands of the CC2420 are carried out with what is called
‘command strobes’. They are single-byte commands that are use to initialize and
configure the CC2420 as well as to carry out functions such as transmission. Immediately
after a command strobe is issue a status byte is return. However, the status byte does not
reflect the current command strobe, only the previous ones. The SNOP command, which
does nothing else than return a status byte is useful here. For further information as to the
content of the status byte, refer to the CC2420 datasheet, page 29. The list of command
strobes as defined in the CC2420 datasheet is shown below.

15

Address Register Register type Description
Ox00 SHOF S Mo Operation (has no other effect than reading out status-bits)
Ox01 SHO5CoN 5 Turm on the crystal oscillator (set XOSC16M_PD =0 and
BIAS_PD =0)
Ox02 STHCRL S Enable and calirate frequency synthesizer for TX;
Go from R/ TX to a wait state where only the synthesizer is
nunning.
DxD3 SREON s Enable Rx
Ox0d STHON 5 Enable TX after calibration (if not already performed)
Start T in-line encryption if SPI_SEC_MCDE #0
0x05 STEONCCR s If CCA indicates a clear channel:
Enable calibration, then T,
Start in-line encryption if SPI_SEC MODE =0
elaa
do nothing
OxDE SREFCFF 5 Disable RX/TX and frequency synthesizer
Ox07 SXOSCOFF 5 Turm off the crystal oscillater and RF
=D& SFLUSHRX 5 Flush the RX FIFC buffer and reset the demoedulator. Always
read at least one byte from the RXFIFC before issuing the
SFLUSHRX command strobe
OxD9 SFLUSHTX] Flush the TX FIFO buffer
Oy SRCK 5 Send acknowledge frame, with pending field cleared.
O0xDB SACKPEND 5 Send acknowledge frame, with pending figld st
Ox0C SEXDEC s Start RXFIFO in-line decryption / authentication (as set by
SPI_SEC_MODE)
0x0D STHENRC 5 Start TXFIFO in-ling encryption [authentication {as set by
SPI_SEC_MODE}, without starting Tx.

The CC2420 also contains registers that store configuration information, among
other things. Through these registers you can do things such as choosing the channel to
be used for transmission (there are 11 channels available). All register store two bytes of
information and most of these registers are both readable and writable. A comprehensive
list of registers and their individual functions is given in the CC2420 datasheet, starting
on page 63.

The only two registers that are not two bytes long are the TXFIFO and the
RXFIFO. These are 128-byte FIFO registers (the first byte in is first byte out) and handle
the transmission and reception payloads. They are interfaced in the same manner that the
rest of the register but they have a few extra considerations to be taken into account. For
the RXFIFO, when a message is received the FIFO output pin in the microcontroller goes
high indicating that there is a packet in the register. If the length of the packet exceeds a
threshold number of bytes that is configurable in a register, then the FIFOP flag goes up.
In our code, this threshold is set to be the same length of the packets expected and an
interrupt flag goes up as soon as the packet is completely in the register. The first byte out
always indicates the length of the packet stored in the register and the next-to-last byte
indicates the RSSI value in 2’s complement. In our code we decided to disregard the
negative sign of the dB readings coming from the CC2420 for simplicity’s sake.

The TXFIFO requires that the first byte written into is the length byte and that the

subsequent bytes comply with this length. If this is not the case a TX UNDERFLOW is
reported in the status byte. As soon as the register is loaded with a packet, this can be

16

transmitted issuing a STXON or a STXONCCA command. The main difference between
these two is that the latter will only transmit the packet if there are no other transmissions
taking place on the same channel (Clear Channel Assessment is successful). If
STXONCCA is not successful this can be read from the status byte received after
transmission. It is always recommended that the channel be assessed before any
transmissions. This can also be done by checking the CCA output pin in the CC2420
before any transmission; however we decided to go with the first strategy for our code.

In order to have packet transmission compliant with the IEEE 802.15.4 set of
standards we had to implement the CSM-CA algorithm outline in the documentation of
the standard and illustrated by Figure 61 in that document. This algorithm basically
involves waiting a random number of back-off periods (time units) and to retry
transmission up to 4 times before considering the transmission a failure. For each new
try, the range of random back-off periods to wait grows. In our code this is implemented
by using timer0 as the timer that controls the waiting time between tries.

(4) The H-Bridge Subsystem

The system that we inherited from the summer project does not have a speed
control only directional control, which we strongly believe to be one of the causes why
the hovercraft is unstable. A series connection of 3 to 4 diodes is the only limiting factor
for the battery power to fully power the motor. Even with this setup, the speed of the
hovercraft is still considered to be fast and powerful. The directional control is based on
two relays circuits, which switch from one motor to the other. The switching is based on
the Telos motes reading of the beacons. The default switch is on the right motor. When
the readings of the signals of the beacons are the same, the hovercraft has to go forward
by switching the right and left motors back and forward. When it is stronger on the right
side, the hovercraft will solely turn on the right motor until the signals on the left side are
stronger than the right side, and so on.

As mentioned in the Introduction section, the H-Bridge subsystem provides a
better control of the motors. Not only that the H-Bridge offers a better directional
control, but also speed control that is not available on the previous system. To do so, we
make several numbers of decisions, such as the number of motors and parts (Power
Mosfet vs. Relays) to be used in the new system.

One of the options that we could have taken is using a servo to control one motor
with a rudder. Instead of doing this, we decide to keep
the two motors. This decision is made based on
research on the parts and the old hovercraft body

51 S3
design. The trade off that we take into account is to () lv" |/ /M\ (
s2 /

have more weight in the system, with the two

motors. While we save ourselves from creating a new
body design for the one motor option, which we think
would be more troublesome. Creating a new body

17

design is not in our critical path. Thus going back to our proposal that we presented in
the fall, our goal for this project is to improve performance, which can be completed by
pairing a motor with an H-Bridge circuit.

What is an H-Bridge? A circuit diagram resembles the letter "H", consisting of
four-transistors. The load is the horizontal line, connected between two pairs of
intersecting lines. It is very common in DC motor-drive applications where switches are
used in the "vertical" branches of the "H" to control the direction of current flow, and
thus the rotational direction of the motor.

An H-Bridge circuit offers a lot more than the two relays circuits. H-Bridge can
run a motor not only forward, but also in reverse. In the early process of deciding
whether we are |

pairing each motor lf |

with an H-Bridge /

circuit or not, VAN

we find that C) Y () Y . QA/ |
with this forward [~ — /
and reverse

command
abilities, it would be better for us to use these abilities. By having one H-Bridge per
motor, we are expecting a better performance in a way that the hovercraft can make a
smoother, faster, and sharper turns. This is achieved by putting one motor forward and
the other reverse. We then combine this performance with the speed control, so that the
turns performed would not cause instability of the system. For example, for a right turn,
we turn on the right motor and put the left motor on reverse. With a lower speed, we
would be able to manage the torque created in a sudden turn. The directional algorithm
of the new system is still the same as the previous system. Decisions made by the
microcontroller are dependent to the reading of signals’ strength received by the Chipcon
radio chips. A forward action, both motors turn forward, is due to the same signal
strength received by the left and right Chipcon chips.

We think the best additional feature that H-Bridge circuits offers to our project is
the speed control. Not being able to control the speed on the previous system is a big
disadvantage. This feature is achieved by firstly sending PWM signal to the motor,
provided by the microcontroller, and secondly inputting the percentage of duty cycle.
The higher the duty cycle, the faster the motor will go. A 100% duty cycle is equivalent
to what the previous system has, full power, not using PWM signal. By using low duty
cycle (10 — 20%), the hovercraft becomes more stable. For our final boards, we find that
in certain frequencies (over 1000 Hz) in our setup, we need to have a jumpstart. It is
sending a 100% duty signal for a couple milliseconds to start the motor and then
dropping it to a duty cycle less than 50%. In inputting the values, refer to the formulas of
‘pr2’ in the microcontroller data sheet.

18

In the process of creating of our own board, we started
by making a purchase of a 10-A H-Bridge from Tecel.com to
help us in getting a big picture idea. This part works very well
in a way that we can run the motor bi-directionally. What we
then realize is this Tecel board does not use an H-Bridge
driver, to drive the MOSFETs a programmable logic driver is
used. From the recommendation from Dr. Schafer, 1 start
looking at H-Bridge driver parts from Allegro Microsystem
Inc. They offer two different parts: a half-bridge driver, A3946, and a full-bridge driver,
A3940. The full-bridge part becomes our choice, because we want the capability to have
the motor to run forward and reverse, an upgrade from the inherited system.

After building and testing the A3940 circuit on the datasheet in a breadboard (see
next page), I find this part to work and satisfy the requirements for the system. The only
problem in my testing environment is that there is not enough current to run the motor
from this circuit in the breadboard, but I can hear the motor is spinning on the inside.
The breadboard has a fuse of 1A, and from previous testing the motor at least need 7A.
The values of resistors and capacitors in the block diagram can be found in the datasheet.
Thus Dr. Schafer helps me in this testing process by building a PCB board so that I can
run the motor with enough current.

This subsystem involves both software and hardware. The software is not as
complicated as the Chipcon subsystem. For the most part, the software for this
subsystem engages on setting values of the applicable registers internally in the
microcontroller and sending logic 0 or 1 to the H-Bridge board. The hardware for this
subsystem is consists of a full-bridge driver (A3940, mentioned above), four-MOSFET, a
number resistors and capacitors. The microcontroller board and the H-Bridge boards are
connected with a bundle of wire with 10-pin Molex pin connectors on the three boards

Functional Block Diagram

FEAT

bt

==
GATE ==
DRIVE B -
=

19

Software
Generating PWM Signal

This Microchip controller capability is implemented by setting the values of the
duty cycle register (CCPRxL and CCPxCON), timer control register (T2CON), and
PWM period register (PR2). CCPRxL and PR2 values are calculated from the PWM
duty cycle and period formulas in the PIC datasheet (Matlab code to calculate these
values, the function can be found in the Appendices section). In our final code, the
calculation is not implemented in the code. I use the Matlab code to obtain the values of
pr2 and CCPRxL and CCPxCON, and use the values in the duty cycle function.
PIC18F4620 is able to provide two PWM outputs in pin ¢l and c2. Keep in mind that the
output of CCPICON is in ¢2, while CCP2CON is cl.
EQUATION 15-1: EQUATION 15-2:

W Pariod = [(FE2)+ 1]+ 4« TOSC » FW Dty Crele = (CCPENL.COCPXCON=5:4=) »
{TMF.2 Prescale Value) TOSC » (THE2 Prescale Value)

For more details, this information can be found in Chapter 15, Capture/Compare/PWM
modules.

//1. Setting the pwm period by writing to the PR2 register = 0x9C (hex)
pr2 = 156;

//2. Setting the pwm duty cycle by writing to the CCPRxL register and
CCPXCON<5:4> bits in this case CCPR1L & CCP1CON (with 40% duty cycle);
PWM Duty Cycle = 4.0192e-4 s

ccprll = 125 >> 2;
ccpr2l = 376 >> 2;
//ccprll 00011111b; //for 20% duty cycle
//ccpr2l 01011110b; //for 60% duty cycle

//writing to CCP1CON
//5. Configuring the CCPx module for PWM operation (for PWM mode: 11xx)

ccplcon.3 = 1;
ccplcon.2 = 1;
ccplcon.l = O;
ccplcon.0 = O;

//writing to CCP2CON
ccp2con.3 =1
ccp2con.2 =1
ccp2con.1 = O;
ccp2con.0 = 0O

//3. make the CCPx pin an output by clearing the appropriate tris bit
trisc.2 0; //the output of CCP1l is c2, not cl
trisc.1 0; //the output of CCP2 is cl

//4. set the TMR2 prescale value, then enable Timer2 by writing to
T2CON (TMR2 = 16 (00 = 1; 01 = 4; 1x = 16)

t2con.1l = 1; //prescale value
t2con.0 = O; //prescale value
t2con.2 = 1; //turning on timer2

20

Sending signals to A3940

Control Logic

PHASE ENABLE MODE SR GLA GLB GHA GHB SA SB Mode of Operation
0 1 X X 1 0 0 1 Lo Hi Reverse
0 0 0 1 0 1 0 Hi Lo Fastdecay, SR enabled
0 0 1 1 1 1 0 0 Lo Lo Slow decay, brakimg mode
0 0 0 1] 0 0 0 0 Z Z Fast decay. coast
0 0 1 1] 1 0 0 0 Lo Z Slow decay, SR disabled
1 1 X X 0 1 1 0 Hi Lo Forward
1 0 0 1 1 0 0 1 Lo Hi Fast decay. SE. enabled
1 0 1 1 1 1 0 0 Lo Lo Slow decay, braking mode
1 0 0 a 0 0 0 0 Z Z Fast decay, coast
1 0 1 1] 0 | 0 0 Z Lo Slow decay. SR disabled

NOTES: All faults will coast the motor, 1.e.. GHA = GHB = GLA = GLB = 0 to switch off all bridge MOSFETs.
X = Indicates a “don’t care”™.
Z = Indicates a high-impedance state.

Fault Responses

Fault Mode RESET FAULT CPReg. VREG13 VREGS GHx GLx
No Fault 1 0 ON ON oN - -
Short-to-Battery @D @ 1 1 ON ON ON 0 0
Short-to-Ground D @ 1 1 ON ON ON 0 0
Open Bridge (Vpgap)®® 1 1 ON ON ON 0 0
Vgeeis Undervoltage 1 1 ON ON® ON 0@ 0®
Vgg Overvoltage 1 1 ON ON ON 0 0
Vgg Undervoltage 1 1 OFF OFF ON® 0® 0®
Thermal Shutdown 1 1 OFF OFF ON® 0® 0®
Slesp 0 1 OFF OFF QFF Z Z

RESET. Control input to put device into minimum power consumption mode and to
clear latched faults. Logic “1” enables the device; logic “0” triggers the sleep mode. It is
internally pulled down via 50 k Q resistor.

ENABLE. Logic “1” enables direct control of the output drivers via the PHASE input,
as in PWM controls, and ignores the MODE and SR inputs. It is internally pulled down
via 50 k Q resistor.

MODE. Logic input to set the current decay mode. Logic “1” (slow-decay mode)
switches off the high-side MOSFET in response to a PWM “off” command. Logic “0”
(fast-decay mode) switches off both the high-side and low-side MOSFETs. It is internally
pulled down via 50 k Q resistor.

PHASE. Motor direction control. When logic is “1”, it enables gate drive outputs GHA
and GLB by allowing current flow from SA to SB. When logic is “0”, it enables GHB
and GLA allowing current flow from SB to SA. It is internally pulled down via 50
kQ resistor.

SR. When logic “1”, enables synchronous rectification; logic “0” disables the
synchronous rectification. It is internally pulled down via 50 k Q resistor.

FAULT. Open drain, diagnostic logic output signal. When logic is “1”, it indicates that
one or more fault conditions have occurred. Use an external pull-up resistor to VREGS or

to digital controller. Internally causes a coast when asserted. See also Functional
Description, next page.

21

LONG. When logic is “17, it selects long dead time between GHx and GLx transitions
of same phase. When logic is “07, it selects short dead times. It is internally pulled down
via 50 k Qresistor.

The possible ten modes of operations from the Truth Table are more than enough
for the performance that we want for the hovercraft. Hence with the limited amount of
pins that we are using and with the advice of Dr. Schafer, SR and MODE are set to be
high by leaving of the resistors, to open the connection to these input pins. The
schematic below is based on the functional block diagram above, with an addition of
jumpers so that user can choose to power the chip using the battery power from the
microcontroller or from the motor’s battery.

JPL
N
=
"~
]
o=
Eal+
1
1
4 2

| 00O u
5 AL
e
S T
LREGS =S
—_—
Touf
o J‘G’%A‘ éxt\l A = — G e oz
dEEaEd«TE it oty — Rt .l:} FRPSENBE R4 .l:} Farsangs
15 bt
e Pz pie 8 -4 8
2 cr1 e [2 o
= o oA P2 \
‘ - ‘ : FALT Sa b 2
” OUSET GBHA z +
e o — {HEJE‘T R4 ung o B e
o o — iy } MIDE + UR1: B T
—ele =l = SR UM — .
=<5 O V4 EN e E e
18 & 1 PHASE —_ 2 phpse s P ’Du{
—l ‘ QESFT e e .-
OLEX-34045118 ‘ L ONG 28] Lons ae
2 1mERD LSS
UOSTH OR
5T
4 |C3
Trow
u oz 04
o o
. B b Fomsenes o k} FaPsaNze
== oEr . Ex 1 o
LAwmfd o] do TE_H + a @
7
it o 28 4 oL
oo o [uxl

As a result, the control input signals that we are sending from the microcontroller
board are ENABLE (PWM signal), PHASE (directional), RESET (enabling the device),
FAULT (to avoid fault), and LONG (to set for a short dead time). For having two H-
Bridge boards, we need a total of 10 pins from the microcontroller.

The commands algorithms are:
Forward: PHASE = 1; RESET = 1; FAULT =0
Reverse: PHASE =0; RESET =1; FAULT =0
Brake: Set Dutycyle = 0%

Note: The pin connected to FAULT is supposed to be set as input, instead of
output. When these pins are set as inputs, a FAULT occurred. From checking the
voltages on the board and comparing it to the values on the Fault Responses table, I find
that the possible cause of this fault response is VREG13 undervoltage. The voltage
measured on that pin in this setup is 7 V, which is below the minimum of 12.6 V stated
on the datasheet. By setting FAULT as an output from the microcontroller to the H-
Bridge board, the fault response is no more, although the VREGI13 is still 7V. Although
it sounds impossible to set a value on an output pin, this setup works fairly well.

22

Hardware (schematics of both boards can be found in the Appendices section)

Part Description

Quantity (per board)

Spade Plug

4

MOSFET N-Channel 60V, 50A

Resistor 0 ohm

Resistor 10K ohm

Resistor 39K ohm

Capacitor 1 microfarad

Capacitor 0.1 microfarad

Capacitor 0.47 microfarad

Double Row PCB Headers (Right Angle)

Dual Row Micro-fit Connectors (10-pin)

—t [[| QI = [N DD

Setup for the 10-pin Molex connection between the H-Bridge board and the

microcontroller board

Pin Dr. Schafer’s H-Bridge Microcontroller Board
1 GROUND GROUND
2 RESET PHASE
3 ENABLE RESET
4 MODE LONG
5 Vis N/C
6 LONG ENABLE
7 PHASE N/C
8 SR N/C
9 FAULT FAULT
10 N/C VeB

How the Molex pins are connected (H-Bridge’s pin = Microcontroller’s)

H-Bridge

Microcontroller

1

1

3

6

N/C (5 or 7 or 8)

10

4

2

N/C (5 or 7 or 8)

O |0 ||| (W] b

9

[a—
(=)

N/C (5 or7or 8)

23

Microcontroller board Pin Assignments for the H-Bridge (where the signals coming

from):

Right Motor Left Motor
PHASE B5 (pin 38) A3 (pin 5)
FAULT A4 (pin 6) A0 (pin 2)
RESET CO0 (pin 15) A2 (pin 4)
ENABLE C2 (pin 17) C1 (pin 16)

Subsystem Testing

To ensure the functionality of the subsystem, different testing is performed. On
the hardware side, the 9-wire connections are tested using the functionality of Ohmmeter
on a DMM. The purpose of this testing is to make sure that the headers are placed
correctly on the slots, so then there won’t be signal missing in transmission. This same
test is also performed to ensure the connection on the microcontroller board. Since there
are two sets of 10-pin connectors, there are two sets of the signals being sent. By doing
this, I find out the set of signals is going to the left or right connector. There is no
software-focused testing, other than the SourceBoost Builder and Compiler.

The actual test of the software is when I integrate the hardware with the software.
For input to the program, the hyperterminal is used. The microcontroller is connected
through a serial cable connection. Values such as duty cycle for speed control and set of
phase, reset, and fault for directional control can be set through the hyperterminal. For
the first couple of times, it is necessary to focus on the polarity of the motor. If you
command the motor to go forward and one or both of them are going on reverse, it means
that you either connect the wrong polarity of the motors to the board or switch the phase
values that are being sent to the motors. One more thing to keep in mind: the same
identical motor won’t run the same in the same setting and sometimes the motors need a
jumpstart. This can be done by starting with high percentage of duty cycle (above 50%)
for less than a second, then drop the percentage of duty cycle to achieve a more stable
system.

System Integration Testing

(1) How Did We Test It?

When working with wireless technologies, the testing environment is a very
important factor to consider in order achieving optimal results. Small areas with several
walls, such as a classroom or small lab, are bad testing environments for two reasons.
First, it doesn’t give much room for the hovercraft to maneuver, and second, there is large
probably of signal interference due to reflections. For this reason, we decided to take out

24

testing to the Stepan Center in order to test in a larger environment and minimize
reflections.

Eeacon Strength = 5, Antenna Facing Yest, Mote on Yertical Block

(2) Did Our Testing Verify the Requirements?

After testing the hovercrafts it was apparent that some of the requirements were
fulfilled, but others were not. All of the subsystems functioned properly independent of
the other, but when combined there were some issues. We believe that these issues
consisted mostly of software uncertainties that deal with timing and interrupts. This is
one possible reason why the overall system worked sometimes, but crashed at other
times. So the end result was that our system functioned inconsistently and there are still a
few kinks to be worked out.

However, we did demonstrate that we were able to build a stable and rigid hovercraft that
traveled fairly straight when both motors were commanded to move forward. This proves
that our weight distribution throughout the hovercraft was fairly consistent. We also
proved that the Chipcon radios in conjunction with the microcontroller serve as a very
consistent means with which to read and detect packets sent from a remote Telos beacon.
These measurements were more precise than the measurements taken by the hovercraft
fitted with Telos motes from last semester.

Also, we were able to show that with one H-bridge controlling one motor we were
able to provide much more control over the hovercraft than we ever could have had with
the switching circuitry of last semester. Last semester we were only able to achieve
“bang-bang” control by rapidly switching ON and OFF the motors to go straight, but now

25

we are able to run both motors simultaneously which allows for a more precise beacon
locating machine.

Overall, the algorithms which prove the requirements are shown to be successful
in that the software is able to display information which verifies correct recognition of
packets and the steps that should be taken in order to accomplish the subsequent task.
However, the software was inconsistent in the manner in which it made the hovercraft
physically accomplish these goals. In other words, the “brain” was unable to make its
“legs” walk.

Users / Installation Manual

(1) Installation

The creation of the hovercraft and installation of the electronics is fairly
straightforward. The stencil for the hovercraft base, chassis, and motor platform were
originally taken from an online hovercraft company at www.hovercraftmodels.com.
However, we deviated slightly from their design in order to accommodate our needs. For
example, we had to construct the chassis in such a way as to fit the width of the
microcontroller board and still have enough room to have the Chipcon antennae project
from the side. Also, the company’s design utilizes a servo-mechanical system for one
thrust fan for propulsion, but we changed to two thrust fans which we could more easily
control using an H-bridge circuit. The custom design and scaled measurements were
documented and are listed as an attachment.

After the proper plastic pieces have been cut out in accordance with the specified
measurements, they can take shape with the assistance of plastic screws to hold the
respective pieces together in a nice rigid structure. Note: the locations for the screws are
indicated on the hovercraft design drawings. Next, the skirt may be attached to the
underside of the hovercraft base using the same screws. The skirt can be purchased from
the website as part of a kit, but an alternative that works just as well is an extra-strength
plastic trash bag that should be cut to an appropriate size (a little longer and wider than
the hovercraft) and glued together with proper epoxy.

Finally, the motors may be attached. The lift motor is attached in the center of the
Top Deck of the base, and the two thrust motors are attached to the top of the motor
platform as indicated by the screw holes of the design drawings.

The microcontroller board is inserted under the “hood” of the hovercraft where it
fits nicely in designated slots on both sides of the chassis. Make sure that there is enough
room at the ends of the board to mount the shielding for the Chipcon radio. There are pre-
drilled holes on the board for mounting, however, it might be necessary to drill larger
holes in order to accommodate the larger screws needed for the right-angle mounting

26

http://www.hovercraftmodels.com/

piece. The H-bridge boards can be mounted on the deck of the hovercraft base directly
beneath the motors in order to keep symmetry and better center of gravity.

(2) Setup

Once the equipment is properly installed, you can begin preparing the hovercraft
for testing by placing the lithium polymer batteries on the hovercraft. One battery
supplies the lift fan, and the other supplies the two thrust motors. Keep in mind that you
would like to keep a well-balanced center of gravity, so positioning of the batteries are
very important to the dynamics of the system. Also, make sure that the batteries are
securely fastened to the hovercraft to avoid sliding of the components during operation.

Connect the terminals of the lift fan battery to a switch, and connect the terminals
of the thrust fan battery to each H-bridge board. Also, at this time you can connect the
10-pin molex connectors from the H-bridge to the respective microcontroller board
connector. And if you haven’t already done so, attach the Chipcon radios to each side of
the microcontroller board with the antenna facing closest to the edge of the board.

When you are ready to begin programming, insert the 9V battery onto the
microcontroller board and attach the programmer connector to the appropriate jumper on
the board. Also, if you would like to use the HyperTerminal for testing, then you will
need to also attach the serial port cable to the board. Open the SourceBoost software
program on your computer to write C code to be downloaded onto the microcontroller
board.

(3) Is It Working?

Once the components are properly installed and set-up, you are then ready to
begin testing. Press the Reset button on the microcontroller board to start the program
over and check the results. If you observe strange results or if nothing happens, then
check to make sure that the programmer connector is attached in the correct orientation.
Also, it is a good idea to check that you are getting the proper supply voltage from the
battery on the microcontroller board. Otherwise, review your code to make sure your
initializations and functions are setup correctly.

If you have soldered your own board, then double-check the solder-joints to make

sure that you are not shorting out some of the connections. Use a DMM if necessary to
check voltages, resistances, et cetera.

27

(4) Hovercrafting for Dummies

In order to become an expert in the art of “hovercrafting”, it is essential that you
familiarize yourself with the microcontroller in all its glory. Thoroughly complete the
Task Assignments given throughout the semester in order to gain a better understanding
of the processes involved, and it will help to serve as a tutorial to learning the ropes.

Download the microcontroller datasheet from the web to gain some insight into
which pins are responsible for which actions and how they can be used. And while you’re
at it, download the datasheets for other major components to understand how the pieces
work together to create the whole system.

Conclusion

Going into the project, we had targeted a goal of having three swarming
hovercrafts traversing a series of four waypoints. To achieve this, we planned
on building a microcontroller board with two Zigbee transceivers which would
control the thrust fans by sending commands to two H-bridges that were based
upon the differences in received signal strength by the Zigbee transceivers. To
accomplish this, we split the project into two main subsystems — the
microcontroller and the H-bridge subsystem. The majority of the semester was
spent researching how to build and program both devices, and by the end of the
term, we had both subsystems working independently of each other. We when tried
to run the Hovercraft system, however, we ran into problems.

For some reason, when the microcontroller and H-bridge subsystems were
connected, the Zigbee transceivers would arbitrarily stop receiving packets at
varying times and the system would freeze. When disconnected, the
microcontroller subsystem would successfully execute all of our code. The
better part of a week was spent trying to determine the cause of the lock-up,
but we were unsuccessful in achieving the goal that we had marked for ourselves
at the beginning of the year. Given the tests of the two individual subsystems,
we hold that this new system will perform much better than the old hovercraft
system - which relied on bang-bang control — once the bug is fixed. We hope
that the information provided in this report has included enough information so
that whoever follows us in working on this project can quickly learn from our
successes and our failures, and determine the communication problem between the
H-bridge and the microcontroller subsystems.

28

Appendix
(1) The Gantt Chart

The complete file can be found on the website or the file bucket CD.

(2) Hardware
H-Bridge Board Schematic

29

Mo - Full -gRiose Bwe Moser] {mhm +Verr : SC
T T - D-EGW "'““"_'
| ! R
1 ¥
. | 1
L L Feipe |
I 1| i e . I
f ll =} AV G i
S — et =) x
e o
e — “I:‘, .
| | L -
— = H]_' -
.
-] ‘ ﬁl-’)
b =17 F
+ ! ey T
i aied
| wlaa™il I
i ‘:'_L'u " --H_l .r.‘-.
| Ou R ™
| = = Y 1
s & I L
e b |
. ——]]&-'—J?pr N !
L i !
S + L — .
1 : : —- -
_— - f
| | . ! 1

H-Bridge Schematic

%.._ nﬁn_ ona (17

My
2t
W
=
T
L]

< —_—

1t

(2]
1]
L]
d 51T &
EL .—Hmm £a FRNBSAn *Hm =
¥0 ED T
]
7]
|
!

—l

Linea

sl

30

e

EERE AR R
E&Eg
g I

L E
el
al @ =] za0
pr—— b SOHEZE A cE R o el
et e @ = wmn..hrm Fhize
A
o Y s
b ak
&7 13
#n
P o
e Bvant k

H-Bridge Board Schematic

+ 154

SBONBSHO 4

K-I-l-my|

puy g-atipug-yebpug-usieloadsapans sifies:D 1eE=) dRT0000 LOOTILER

Z0—-330N

£ o
Nooo

31

Microcontroller Board Schematic

SEMDR DESHEN - TEAS GALVIY

TITLE: MCbrawS_J

1#‘1“
T

Huzbarz
2067 SFADp

Dave: 45057 5087

J FANEW SCHEMHCbrdvS_2.sch (Sheet 161}

32

PIO'ET GAPIGOHINEHOS MANA 0R'0=) BFL0KOL .

1R O R e L
& 7 T, TR TIEEST BHIs g

Microcontroller Board Design

TR I

W 5 8 3 m 5 o —

= £ I T ,
\v Sl - \ \
: | @ & _

)

1]
d
e

33

Hovercraft Body Design

|/"
1
a]

|

I’ §| Ny 9
l w
g

‘??:E gi_r.-
g’ U]
Skirt
244 (Micco conteo|les
2" Nount

34

qIE© T T WA T g ptw

1+
ffm
(7% 0 D e T3 : % 24" ;"'ngfa- F Lq, ‘f‘“‘l:Df‘m

TE iw I

--H-_hh-_—__-"—-_ - -
}q& - TI {I:Iﬂ!{?:j 34 - :n .Wl" 2)_:':1 %c}_____[Je J
_-f-___________:--:_' ——————— —i

?-:F.ﬁ" q [l

qgﬁ-ﬂ'ﬂ-f Ea{:k prér‘

. %!
T
W'y

CLhassis

35

(3) Software
Hovercraft.c

H:%Senior De=igniSecond seme=ster’Code'.final'hovercraft.c

Fincluds= “mystam_ ki

Fincluds=
Fincluds
Fincluds=

ipragma
jrragma
ipragma
jrragma

OBC_HS_1H

ipragma CLOCE_FREQ 1

extern bit 1 receix
a=tern bit =

} Paylead;

Favload JetPayloadloZero (Fayload)

woid main(void)

{

LCD dimisil;
CCZ420 init

Defines the speeds u=ed

he difference in dbm that

{ te= that the beacon is in
define dbm diff 3
dafine turn speed €
fdefine straight_speed €
=hort counter = 0;

=hort temp;

char?

rload 1_payload, r©_payload;
bool repesl i =

rcwvad = ¢ ae;
putstring ‘nle=t program

1l receive

r receive

The code block bzlow provides a current
i that is to get
forward{g];
dalay ms|

36

H:\Senior Design'Second semesser'Code'final'hovercrafs.c 2
if == 1}
{
packet = receive pkt 11{]; Beceives packet
1 receive = 0; lears the semaphore
1 _payload.i
1 _payload. 1]1;
1_payload. ket [2];
1 _payload. 3];
1
if received, right semanphore
{
Beceives packet
lears the semaphore
r payload.id = packet([0];
r payload.type = packet ;
r payload.timestamp = packet[2];
r_payload.rssi = packet[3];
1
W

! =hold value

if [r_p;r_.'load.::zzi X .-EFE:_THRESE 11 .'I._p:g'.oad.::::i o= REFE:_TERESE}
[

repel rowd = true;
counter = counter +

1 payload.r==i - r_payload.zrssi} »= -dbm_diff && (1_payload.rssi -«
dbm_dif£}]

put=tring ("\rhn Canter Repal"];
putdec (1_p ad.ra=i);

put=string i

putdec (r_payload.rs=i);

if({direction!=4) reverss(straight_speed);

LD _clear()

If right rep

el== if(l payload.r=s: < r_payvload.r=szi]
{
putstzing (" I S
putdec (1 p
put=tring|

putdes (r_paylcad.rasi);

37

H:\3enior Design‘Second semester‘Code’final'‘hovercraft.c

if (direction!=2) turn_left(turn_speed);

LCD cleaxr

LCD pxintf | Bepel-—-—x1} ;
1
/f If laft repesl

mlea if{l_gaylo:d.:as; > x
{
putstring |
putdec(1_p
putstzing ("
putdec (r_payl

Right Repel");

if (direction!=2) surn_right (turn_speed];
LCOD

LCD pxi

clear()

———Repel");

if {counter »>= COUWTER_THRESH)
{
counter = 0;
{/fmove to the next waypoint beacon
putssring ("\rnNext Beacon"];
LCD setpos(3,0);
LCD_princf ("Beacon: ");
}
/{ 8et the Payload variable= to sero
1l payload = JesPayloadToZerc(l payload);
r_payload = S=sPayloadToiercir_payload);
1
/ If not EE type, then not rapel =ignal
elas

cad.sype == 0xA3] ££ repel rowd

If canter tra
({1 payload.r==i - r_payload.r==i)
<= dbm_diff}

»= —dbm_diff £& (1_payload.r==i

Center Rttract
rssi);

putssring (™ ws H
putdec(r_payload.r==i];

if{direction!=1l] forwardi(straight_s=speed];
LCD_cleax{l;

LCD_primncf (" —-——=Rtcract<———");

ht attract

_payload.rssi < r_payload.rssi)

putssring ("\rinleft Astract™};
putdec(l_payload.r==i];

38

H:\Senior Design‘Second semesser’Code’final'hovercrafs.c

putssring{®™ w= "};
putdecir_payload.r==i];

if{direction!=2] turn_right (turn_speed];

LCD_cleax
LCD_prinsi(” Astracs——-—:="1;

If left attract

else if (1 payleoad.r=s=i » r_paylead.zrs=i]

[

putstring ("ri\n Bight AtSract"l;
putdecil_payload.r==i];
putstring{®™ w= "};

putdeciz_payleoad.r==il;
if{direction!=3} b::n_left::ur:_sgeedj;

LCD cleax{l;
LCD_printf ("<———Atb

1

Clear Payload variables=s

1 payload = Zet cadloferc{l payload)
r_payload = ZetP cadTloZerc {r_payload
}
}
elsa ff If the are not the same an error has occcured

{

putstring ("Errec!™]
cadloZero |
cadloZero |

1l payload =
r_payload =

C3K = = a; / Zets receiwve
temp =33P=end (IXOSCOH] ; Ff the BEFIED
temp =33P=end (3THCAL);

temp =33F=end (3IRXON] ;

temp =33F=end (3FLU3H
temp =38P=end (SFLUSH
CBH_z =1;

C3K 1 = 0;
temp =33FP=end (IXOSTONH) ;
temp =33F=end (3TECAL] ;
temp =33P=end (ZRKON] ;

Fayload ZetFayloadloZero(Payload package)
[

package.id = 0;

package.type = 0;

H:'Senior Design'Second semescer)\Code'finallhovercrafc.c

o

package.time=ztamp = 0;
package.rs=i = 0;

return package;

39

HBridgelib.c

H:\Senior Design'Second semescer’Code’ final'Horidgelik.cz

/4 Code updated 5/1/07

FEE R U REERRNREE RN A SRR hk kR
This progzam contair
ntrol fncs

=:
*

#* H-Bridge

EE AN F AR T AN B F AN NN A
finclude “<aystem.h>
finclude "EESD.h"
fincluds "Horidge.h

short direction = 0; 0 = brake, 1 = fwd, 2= rgt, 2 =1ft, 4 =xrvrs
/f Bets H-bridge intial settings
wodd hh:idge_init:vnid?

[

unsigned short num;

T T e T T S e
¥**=ztart of pwm code*?
EE AR Ak E o hh kR Ak R A
=etting the pwm period by writing to the PRZI register
= 15§; /i/pwm freguency of B85 Hz
= &§0;
riting to CCF1COM
plcon.5 =

CCPxr module for EWM operation (for PHM mode: 1100)

f{5. configuring the CCPx mcdule for EWM operation (for PHM mode: 1100 -
not EECE)
ccpZcon.

ccpZcon.2

ccplcon.

ccpZcon.

te tris bit

the CCPr pin an cutput by cle ng the appropz
: the cutput of CCPl is cZ

{/the output of TCPZ is cl

(00 = 1; 01 2; 1= = 16}

rescale

ticon.0 = 0; reszcale

tEZcon.Z = 1 urning on timexZ

[{directional variables initialimation

; Jf/i=s thi= necessary? for now yes.

‘setting the pins to be output waluss to FHR3IE and RESET
for Right Motor
trisb.5 = 0;
trisc.0 = 0;

for FHASE
Jfoxr REZE

the THRZ prescale wvalue, then esnable TimerZ by writing to T2C00N

mode,

40

H:\Senior De=ign YSeacond samaster)Code’ finall, Horidgelib.c

fifor Lafts Motor
trima.3 = 0; /for PHRSE
trima.2 = 0; '/ for RESET

/{mmtting the pin= to be input values

trima.4 = 0; {/foxr FAULT
trima.ld = 0; {4 fox FRULT
lata.3 = 0;
trima.l = 0;
lata.l = 0;
f*if porta.d = 11
lata.2 = 0;
delay m=(250};
lata.2 = 1:}
else if porta.d4 == 1
latz.0 = 0;
delay m=(250};
lat=.0 = H
el=e= [}
kg
latc.0 = 0; ffinitialigation faor BRESET
lata.2 = 0; flinitializsation for RE3ET
Fibrake{); flinitialigation =0 resst is sat 1[277
zeturn;
b
I L R R L T E o e apr gy
The following functions®
* deal with directional #
#* control of the HC *
uu]II.I.'\.FJJII.I.'\.FJIII.U'\.FJIII.UJJ..'
woid f:wd_mR [wroid]
[
latk.5 = 1; Ffifinitializgation for FHRSE
lata.2 = 0; ¥ nitialisation for FAULT
latc.0 = 1; fifinitialisation for 3£
1
woid f:wd_ml [wrodid]
[
lata.3 = 0; ffinitialisation for FHRSE
lata.0 = 1; Fffinitialigation for FAULT
lata.2 = 1; ffinitialisation for RE3ET
b
woild :v::_mR [wrodid]
[
latk.5 = 0; Fffinitialisation for FHRSE
lata.2 = 0; nitialisgation for FAULT
latc.0 = 1; Fffinitialigation for RE3ET
1
woid :v::_ml [wrodid]
[
lata.3 = 0; nitialisation for FHASE
lata.0 = 0; initialisation for FAULT
lata.2 = L1; fifinitialisation £or RE3ET

woid h:k_mR {wodid)

{

(]

41

H:\Senior De=ign YSeacond samaster)Code’ finall, Horidgelib.c

latkb.5 = 1; ffinitialisation for FHASE
lata.4 = 0; i nitialigation for FAULT
latc.d = 1; ffinitialisation for RE3ET

woid bz k_:rnL {wodid)

{

lata.3d = 1; ffinitialisation for FHASE
lata.0 = 0; fifinitialisation £for FAULT
lata.2 = 1; Fffinitialisation for REZET

{/ Imput i= 2 number, cutput is a corresponding
/{ PHM =metting

unsigned =hort pwmcoconvert (unsigned short inl)
[

unsigned short num;
I

if {iml = O}

IAm dtoyc
else if

num = dtoyc
else if

num = dtoyc
else if

m dtcocyc
else if
num = dtoyc

el=se if

mum dtcoyc
el=se if

num = dtcoyc
else if

num dtcoyc
else if

m dtcocyc
else if)
num = ;o Af100% dtcoyc

return num

if {iml == 0

Am dtoyc
alse if

mam dtoyc
else if

mam dtcocyc
alse if

num dtoyc
else if

mam dtcoyc
else if

Am dtoyc
alse if

num = dtoyc
else if

mam dtoyc
else if

num = 565; J/50% dtcyc
mlme 1f (zZnl == 3

num = E28; J/100% dbcye

return num;

42

\Senior Design'Second semester‘\Code'\final\Horidgelik.c

The following function= t© a= input the speed

a= definsed in pwmconwve

void forward (un=igned short speed)

{

unsigned short num;

num = pemconvers (speed);

ccprll = pnum >> 2;
ccpriZl = pum >> 2

void reverse [unsigned short speed)

{

unsigned short num;

num = pemconvert (speed);

cocprll = pum >> 2;
cocpr2l = pum > 2;
rvrs mL{);
rvra mR{};
direction = 4;
}
woid brake {wvoid)
{
0 x> 2;
=0 »> 2;

direction =

void turn right {unsigned =hort =speed

{

unsigned short num;

num = pemconvers (speed);

wvoid turn_left {(unasigned short speed]

{

43

car'Codae’ final Horidgalik

num = pwmconvers |speed);

= num >3
= num >3

direction = 3;

o

44

cc240.h

H:'\Senior Design'Second semesteriCode’finallccf4Z0.h

Finclude Cmym x b

// PIN definiticns

fdefin= FIFQ 1 porth.l

jdefins FIFOF_ 1 portk. O

jdefins CCR_1 portk. €

fdefine C2H_1 latd.Z?

#defins FIFC_x porth. &

#defins FIFCF_x porth. 2

jdefine CCR_x portk.7

fdefine C3H_=x latd.2

§f Timer interrupts

fdefins CIMATMA intcon.§

K Command Strobes

fdefine IWOF 0x00
bits}

fdefine IHOSCON 0x01 FfF
BIAS PD = 0O)

$define STHCAL =0z /S
REX/THE to a wait =tate whears

fdefin= IRKOM 0x03

fdefine 3ITHON Ox04 ff
Start TX im-line encryption

fdefine STHONCCA o=0s S/

TE.3tart in—line encryption
fdefine IRECEE ¢

fdefina ZHOSCOET
fdefine 3FLUSHREX

0x08

read at least one byte from the BEXFIFD before issuin

SFLUSHTX
SRCKE
SRCEFEKRD

fdefine

fdefin=

fdefina

fdefin= 3JRXDEC
==t by 3FIL

Fdefins STHENC
by 3PI SEC

fdefin= ZREZS
required to be 0,
ignored.

SEC

MODE] , without =t

// Register RAdresses
fdefine MRIN BEG
fdefine MOMITRLO REG
Fdefine MOMOTRL1 REG
fdefine R33I REG
fdefine SYNCWORD REG
#defins THCTRL_BEG
fdefine RECTRLO_REG
fdefine RECTRLL_REG
fdefine FICTRL_REG
fdefine SECCTRLO_REG
fdefine SECCTRELL_REG
fdefine EATTMON REG
fdefine IOCEGO_REG
fdefine IOCEFGL_REG
Fdefine MANFIDL REG
#define MANFIDE BEG
#defins FEMTIC_REG
fdefine MRNAND REG
fde=£fin= MANOR REG
fdefine AGCCTRL REG
fdefine AGCTSTO REG
Fdefine AGCTIT1 REG
$define RGCTSTZ_REG

FIFQ pin
FIEQF pin
Clear Ch
Chip =el

nel Asse=z=ment pin

Bight FIFC pin

FIECE pin

! Clmar Channel Asse==ment pin
! Chip =ele=cs

/f CEMR algorithm timer

airn Control Register

odem Control Ragi=zter 0

ocdem Control Begi=ster 1

2 Jtatu= register

Synchronisaticon word control regisser

22t Contrel Regisser

Receive Contrecl Register O

Receive Contrel Register 1

Freguency Synthesiger Control and Status Register
¥ Control Regisser 0

Security Control Regisser 1

/ Battary Monitor Control and 3tatus Register

‘ Output Control Register O

Output Control Register 1

Low 18 bits

High 16 bits

Statve Machine Time Constants

=ignal AND cverride register

=igmnal OR ov de register

Control Register

Test Registexr 0O

Te=st Registexr 1

Test Register 2

R35I and and Control

Securi

W

W

W

[

W

Ho Operation (ha=® no other sffect than reading out =tatu=—n
Turn on the crystal oscillaser {set HO3C1lEM_EFD = 0 and

E le and calikbrate freguency synthesizer for TH;Ge from
only the synthesiger i= running.

E le RX

E TX after calibration not already performed) .

if 3 SEC MODE !'= 0

If CCR indicates a cle=ar channel:Enable calibration, then
if 3PI 3EC MODE != (0 else do nothing

Disable R¥/TX and freguency =ynthesiger

Taorn off the crystal o=cillateor and RE

Flush the RE FIFD buffer and reset the demodulator. ARlways

the SFLUSHRE command strobe

Flush the TE FIFQ buffer

Send acknowledge £ with pending field clearsd.

Send acknowledge fimld ==t.

S 8tart BHFIFD in-line authentication {a

TEFIFD in—line encryption ! asthentication [a=z set

a ng TH.
LES 3tand alons encryption strobe. SFI 3EC MODE is not
cryption module must be idle. If not, the strcbe is

45

H:'S3enior De=sign'Second semester’\Code'\finallcc24Z0.h

fdefin= FIT3TO RE
fdefin= FI3T3TL REG
fdefina FITSTZ REG
fdefin= F3T3T2 REG
Fd=fine BEBFFI3T_REG
fdefine FIUITATE REG
dd=fin= RDCTST RE
Fdmfins RE
Fd=fin=

fdefin=

Fromfin= |
fdefine RKFIEO_REG

/4 IEEE

Fdmfine EEinit 2
Fdmfine WEinit 1]
Fdmfine EEMax 5
Fdefine HEMax E

Jf Blgorithm definitions

jdmfine REFEL THRESH 53
fdefine COUNTER_THRE3EH z
{{ Rlgorithm variables
bit 1 receiwve; fildefined in the header insts=ad of the individual C files=. _.
Fibit © receive; [/do the values from ccZ420lib need to be passed any =pecial way to the

ralues

void interrupt (void] ;
S3FPI imit (void];
woid CCZ2420 woid] ;
intrpt init{woid);
353F=end {char

woid

woid
char

unsigned rezd reg

unsigned

void write reg liunsigned

void write reg riunsigned

char*
charc*

1 {wrodid] ;
::ad_:xfifa_:[?aid:;

read rrfifo

wvoid write trfifo
woid w::te_txfifn_r[cha:”

1l[{chazc?®

char read trfifo 1 (wvoid];
char* rzad_txfifn_r[?nid:;
charc* :::eiv:_Pht_L[?oid

char* :Eceive_Pkt_:[vnid.,

in hovercraft.c?

address] ;

ljunsigned short
read reg_r (unsigned short

Ox Frequency Synthesiger Te=st Begister O
On Frequency Jynthesiger Test Register 1
Ox Fraguency Synthasigar Test Begiszter 2
Ox [/ Freguency Synthesizer Test Register 3

" Beceiver Bandpass Filter Te=t Register

F/ Pimite State Machine State Status Register
ADC Test BRegister

DAC Test Begister

Top Level Test Bagister

Pe=zerved for future use control
Iransmit FIFD Byte Bagistar
Receiver FIFD Byte Begister

[
won

Mo W ow o -

(=]
]
LR I S S S]

(=]
w

802.15.4 Definitions

addrass};
address] ;

addres=, un=igned =hort d
d

ha
hao un=igned =hort

addre==,

payload) ;
payload) ;

wolid send_packet_l({char* packet);
woid send_packet_x(char* packet);

woid CSHE_EB_LEUnii
woid CSHE_CB_:ivaii

wvoid timer 2Z20u={int

delay);

Fr

status register

ka

W

46

cc240lib.c

H:'Senior Design‘Second =semesser‘\Code)\finalhcc24Z0lib.c

X R R R R R R R R R R R R R R R R R E R R R R R R R R R RS R R R R R RS E R,

= This file contain= the reguired routines

= reguired to communicate with the TIZ4Z0
-\.r-\.rlII.I.-\.rJJII.I.-\.rJIII.-\.r-\.rJIII.-\.rJJII.I.-\.rJJII.-\.r-\.rJIII.-\.r-\.rJIII.-\.rJJII.I.-\.rJJII_-'
finclude “my=stem.h>

fincluds= "ecZ4Z0 R

finclud= <rand.h>

finclude "EESD.h"

int BE, KB, counter;

bit failure, =end_=;de;

volatile bit C3MA_ int@INTCOM.Z2;
wvolatile bit FCFIFCF leftRINTCON.L;
volatile bit FIFOF _righs@INTCON3.1;

volatile bit =m==pfFIRl.3; {/{ 83PIF: M33F Interrupt Flag ——> tran=/recp complete= or
waiting

bit 1 receive = 0; //semaphore for the left chipcon receiving a packet

; //=emaphore for the right chipcon receiving a packet

bit r receive =

wvoid interrzups (void

{

if [FIFQF_left == 1)
[
FIFQF le=£ft = 0
1 receive = 1

]

if (FIFOF_right == 1]
{
FIFQF right = O;

r receive = 1

]

.'. I'

if [C3HMA_int == 1}

{
countert++;
CEM2 int = 0; ffclear interrupt flag
CSMATME = 0; // Timex(] interrupt DI3ABLED

if{send_siiz == 0}
{
C3ME CA 11

1
if{send_siiz == 1}
i

C3MA CA i

1
IR

r=turn;

1

woid SE:_i:it[void:

{

adconl = 0x0£; // Set all I/0 pin=s to digital
tri=md.D = 0; #f BREBET the chipcon

lacd.0 = 0;

delay ms{250);

lacd.0 = 1;

47

H:\Seniozr De=ign YSacond samaster'Code’) finallecf4201ib. o

T

INTCOH: Interrupt Control Registe

intcon.7
intcon. &

“r

T

/4 PEIE: Peripheral

PIEl1.3 Peripheral Interrupt Enable Begister

/¢4 GIE: Global Interrupt Enable
Interrupt Emable

pi=l.3 = 0; // BBFIE: M33P Interrupt Enable

IFR1.3: Peripheral Interrupt Priority Begister

ipzl.3 = 0; 44 B3FPIP: M33P Interrupt Friority

I3PCCH]l control register for 3PI mode

=spconl.7 = f4 WCOL: Write Colli=ion Detect

==pconl . 6
=spconl .5
=spconl .4
=spconl .2
=spconl . E
=spconl.l
=spconl .0

S3PM (3:0

<

S3FEK: Sync.
CEF: Clock Polarity 3elect

S3P0OV: Receive Overflow Indicator ——> 3lawe Mods Only

Serizl Fort Znable

] Hode S=lect

—--= 0010 = FO3C/E4

Zlock Select kit

/4 BZESTAT =tatus= register for SPI mode
==p=tat.7 = 1; f/ SMP: Jample bit
=spatat.& = 1; /4 CRE: 3PI
trimc.5 = 0; 300, =erial data out
trimc.3 = 0; 3CE, =mrial clock

T

trimsc.4 = 1

trisd.l = 0; /) Voltage regulato
latd.l = L1;

trisd.2 = 0
latd.2 = 1;
trimd.3 = 0: f/
latd.3 = L1;

FIFO)= and the rest as input pins
trisk.1l = 1; f/ FIFQ 1

;
trisk.0 1; // FIFOFP_1
tzisk. € 1; /f Cca_ 1

v

trimsb.4 = 1; ff FIFQ ¢
trisk.Z 1; {7 FIFOF_r
trisk.T7 = 1; [/ CC&_:

[fdebug
trima.3d

1]
(=]

return;

woid CCEQEG_initﬂvn:db

{

unsigned short ans;

putatring ("\z\nRight 3Jtatu=a: ");
CSH_r = 0O;
ans = S3Fzend {3HOFP);
an=s = S55Fsand (3X03CON) ;
puthexians] ;
ans = 53Fsend (3THCAL] ;
puthes (ans] ;

=erizl data in

I

Configures=

(]

48

H:\3eniox 3e:;qnﬂ5ecand samanter) Code’ finalcc24201ik. o

ans = S3Fsend {3RXOH) ;
puthexians] ;
ans = S55Psend {SHOP) ; I Expected state: 0xdE
puthexians] ;

C3H_r = 1;

ans = read reg_r (BRXFIED REG);

C3M r = 0;

ans = 53Fsend {3FLUSHRX} ;

ans = S53Fsend (3ELUSHRX) ;

c3H =1;

putstring["l:ﬂn:eft Status: "); i Configure= l=ft CCE420

csM_1 = 0;

an=s = S55Psend (SHOP) ;
ans = S53Fsend {3EO3CON] ;
puthex (ans] ;
ans = S55Psend (3THCAL);
puthexians] ;
an=s = S55Psend (SEXOH) ;
puthexians] ;
ans = 33F=end (3HOF) ; {/ Empected =state: Oxd€
puthex {ans] ;

csm_1 = 1;

an=s = :e;d_:eg_li?gf:?ﬂ_REE:; F/ Bmads BYXFIFD before flushing it

datazhest]
caM 1 = 0;

ans = 53Fsend {3FLUSHRX} ;

et}

csM_1 = 1;

write rag 1{F3CTIRL REG,
write reg l1{IOCEGD REG,
write rag ri(F3CIRL REG,
w:i:e_:eg_r{IC:FS:_REGr

S3Fsend {3FLUSHRE} ;

Ox&5€S) ; F¢ 8=t to Channel 11

25); {/ 83et FIFOF threshold length
OxE5€S) ;

Z51;

void intrpt_init {void)

[INTCOM bits

intcon.7 =
intcon. 86 =
intcon.5 =
intcon.4 =
ff IRTCOMEZ

intcon . &
intcon .4

[IRTCOMZ bit

intcond. 4

[/ TIMERD
tlcon. 7 =
t0con.
t0con.
t0con.
tlzon.
t0con.
t0con.

O3 B3 b En o

raturn;

1-:

[

i

Global Interrupt enabled
Periphearal Interrupt e=nabled
Timerd interrupt DISABLED
External Interrupt 0 bit =nabled

sing edge (FIFOF_1
rising edge {FIFOP_x]

External Int 0 om xi
on

-

External Int 2

External Interrupt 2 bit enabled

u=zed a= C3MA timer

v
v

1
1

2
0;
1;
1;
1

v

I

Iy prescale factor

Timer] ==t to be S-bit

[}
o
o

{refax

49

H:“S3enior Design'Second semester)Code)\finallccZ2420lib.c

DL kT T L E T Urruprcupruprae S Ay S R up SO e S At
!

EPI read/writ= routines ’
P L L b L mraru e g i ale Sy A e a S e g g o |
char 33F=end{char
[

address]

=sphbuf = address; load data

whileimssp == 01{} wait until transmition is complete
mssp = 0; reset £lag
return sspbuf;

1

R P R E R R R R

#* BRead= an B-bit register .

EE R A AT AR A NN E A A A A T E A A AN R RN [

unsigned short read reg_l {unsigned sheort address}

[
unsignad short data;
char temp;
addrass = zddres= | 01000000k; ff E-bit addras= znd read command
c3n 1 = 0; Iy chip =select
temp = 33F=end (address)
temp = S3F=end (0} ;
data = temp;
data = data << B; f4 Bhift data
temp = S53F=end (0} ;
data = dasa | Semp;
cam 1 = 1; ffchip =elect high
return data;

v

1

unsigned =hort read reg riunsigned short address)

{
unsigned short data;
char temp;

address = addres= | 01000000k; Iy
C3HM ¢ = 0; // chip =elect
temp = S535Fmand (address);

temp = 33F=end (0} ;

data = temp;

data = data << B; f} Bhift data
temp = 33F=end (0} ;

data = data | temp;

C3H_r = 1; ffchip =elect high
return data;

v

X R R R R R R R R R R R R R R R R R R RS SRR R
#* Hrite= to an B-bit register *
I R AR R R R R AR R R R R R R RS R 2222 S

short

void write reg liunsigned addre==,
{
char temp;

unsigned short datal, datal;

E-bit

addres= and re=ad

un=igned =hort data}

datal = {{data >» &) & O0xFF};

data? = {data & 0xFF]; "

C3M 1 = 0; I chip sele=ct
temp = 353F=end (address=);

temp = 33F=end (datall;
temp = S53F=end(datal);
cam_ 1 = 1; f/chip =elect

command

SGeparates ld-bit data to Z B-kbit

50

H: W Seniox Zez;qnﬂﬁecand samanterh Code’ finalcc24201lib. o

raturn;

1

void write reg riunsigned =hort address=, unsigned =hort data)

[
char temp;

unsigned short datal, data?2;

datal = {({data >»> &) & 0rFF};
dataZ = {data & OxFEl; [/ Separates=
C3H_r = 0; {{ chip select

temp = S53F=eand (addreas);
temp = 33F=end(datal];

temp = S53F=and(dataZ]
C3H_r = 1; f

return;

- N oy A w
char* rE;d_rxfifD_L[?nid:

{

unsigned short n, null, le=ngthk;
unsigned short addres=, rs=i, fc=;
unsigned long =fd;

char m=g[l%];

address = 0x3f 010000000 ;

C3W 1 = 0; J/ chip =select
null = S53F=and (addrea=);
length = 33P=end(

m=g[0] = le=ngth;

n=1;

if {length == 17}
[
for{ n=l;
1

mag[n] = 33F=send{0];

almm & If the

return msg;
}
char* rzad_rxfifn_:[?nid:

{

unsigned short n, null, length;
unsigned short address, temp;
unsigned long =fd;

lé-bit data to 2 B-kbit

desired l=ngth then ignors

on

51

H:“Senior Design‘Second seme=tec‘\Code'\finallcc24Z20lib.c

char m=g[l5];
addre=s=s = 0On3f

01000000b;

chip select
nd (addre=a=} ;

if{length == 17}
[
for{ n=l; n<=17; ntt+}
{
magn] = S35P=end (0] ;
C3H_ =z = 1; chip melect
1
alze
{
C3H_ =z = 1; chip =elect
for{ n=l; n<=17; nt++)
{
mag[n] = OxEE;

return msg;

* Receives packet and beacon,
* type, BRISI and timestamp

unsigned short payload,
unsigned short r::i_valr o=ac
ansigned long =£d;

char packet[4];

char? msg;

msg = read zxfife x{l;
l=ngth = m=g[0];

payload = length — 10;

r=ssi = length—-1;

beacon_type = maglpaylead+5];
beacon_id =

msglpayloadt+i] ;
timestamp = msglpayload+T];
Gt
1 =

rm=i Ta m=g[r==i];

if Er:si_'.'al == 12E}

[

ra=i wal = 256 — r==i wal
raz=i wal = r==i wal + £3;

length,

high

on_Gype,

=igned Z2'sms comp R33I valu=

[
3

r==i;

5 off=set:

beacon_id, Simestamp;

[a=sumption: packet

—45

long)

52

H:\Seniozr De=ign YSacond samaster'Code’) finallecf4201ib. o

if [length != 17}

{
beacon_type = 0xEE;
beacon_id = 0x0;
timesSamp = O0x0;
r==i_wal = 0;

packet[0] = be::nn_id;
packet[1] beacon_type;
packet[Z] = timestamp;
packet[2] = :55'__1:11_;

return packet
zharc* :::eiv:_pht_L[?oid:
[
unsigned short payload, length,
unsigned long =fd;

char packet[4];
char* msg;

m=g = read rxfife 11(];
length = m=g[0];
payload = length — 10;
rs=si = length-1;

beacon id = msg(payload+i];
beacon type = maglpayload+i3];
timestamp = msglpayload+T];
=igned 2'

G
1 m=g[r==i] ;

rssi_wal =
if [r:si_'.'al == 128
[

ra=i wal = 256 - r==i wal
==

r==i wal

]

aelse

{

dB offset: —45

ra=i_wal = 45 - r==i_wal;

]

if [length != 17}

[
beacon_type = 0xEE;
beacon_id = 0;
timestSamp = 0O;

r==i wal = 0

1

packet[0] = beacon id;
packet[l] = beacon type;
packet[Z] = timestamp;

r==i;
unsigned short r==i wal, beacon Sype, beacon id,

s comp B33 wvalus=

Simestamp;

packet

53

H:“Senior Design‘Second semes=ster’Code’finalcc24Z01lik.c

packet[2] = :55;_:;1;

return packet;

woid write txfifo_lichar® pawload)

[
unsigned short length, trxfifo_ad, null;
int n;

trfifo_ad = O0x3E;
langth = payload[0];

:e:d[:xfifn_ad};

ength-2}

n<length; nt++)

null = S3Fsendipavloadinl);
n++;
1

E3M_1 = 1;
raturn;

1

wroild w:;te_txfifo_r[cha:” payload)

[
unsigned short length, trfifo ad, null;
int n;

trfife ad = O0x2E;
length = payload[2];

C3¥M r = 0;

null = SSE:e:d[:xfifn_ad};
n=0;

while (n<=length—-2)

fffor(n=0; n<length; nt++)

{

null = S3Fsendipavloadinl);
n++;

C3M_r = 1;

rzeturn;
b
SRR T T I M T ur S '
* BRead= message from TEFIFD .
SRR R T T A g g '

char* read_txfifo_l(wvoid)]

unsigned short length, trxfifo_ad, null;
int n;
char m=g[l%];

54

H:“Senior De=signiSecond semester)\Code'\finallccZ2420lib.c

1]

txfifo_ad = O0x3E | 01l000000k;

c3m 1 = 0;

null = S3F=end (txfifo ad);
le=ngth = 33P=end (SHOF] ;
m=g[0] = le=ngth;

cEM_1 =1

B
return msg;

1

char* IE;I.l:i._t-:l‘.’f:i.:-D_I['..'Did:

[
unsigned short length, txfifo ad, null;
int nj
char m=sg[l5];

trfifo_ad = 0x3E | 0L1000000k;

C3M r = 0;
null = 33F=end (txfifo ad);
length = 33P=end (SHOF) ;

m=sg 2] = Llength;

n=0;

m=g[n] = 53F=and(0};
n++;
1

C3HM r = 1;

»

r=turn msg;

void send_packet_l(char* packet]

{

failure = 0
counter = 0;
BE = BEimnit;
HNBE = HEimit;
send =ide = 0; // Sending on the left
write trfifo 1 (packet);

C3MA CR_1{};

return;

1

wvoid send_packet_r(char* packet]

55

H: W Seniox Zez;qnﬂﬁecand samanterh Code’ finalcc24201lib. o

{

failure = 0
counter = 0;
BEE = BEimitk;
HBE = HEinit;

send =ide = 1; // Sending on the rights
write trfifo r(packet);
COMAa CA_=x(};
return,;
}
- Akt bbb besd bbb sdd bbb edd i
= that asm=ures .
iance with IEEE B02.15.4 *
i
..... bt e B e e A e R A
woid CSHE_EB_L{?oii
[
unsigned short state;
bit =ent;
int delay;
if (counter == 0
{
delay = zandi) &% ({1l << BE) - 1);

timezr_3Z0us (delayl;

aelse

Cam 1 =0

“e

=tate = 35F=send (3ITHOMCCR} ;

r
mstate = 33Fmend{3EOP);
Canm 1 = 1;
=ent = (=tate >> 3};
putstring {"\rn State: "};

puthes (=tate});

if [!mant)
1
delay = rand(} & {(1 << BE)} — 1}

ME = ME + 1;
if (BE == GEMam);
alm= BE++;
if (NB > NEMax)
[
failure = 1;
putatring (" FAILURE'r'="); //START CHECEING HERE

1

else timer 220us{delay);

1

return;

woild CSH&_EB_:ivoii

{
unsigned short state;
bit =ent;
int delay;

56

H:“Senior De=signiSecond semester)\Code'\finallccZ2420lib.c

if (counter == 0

{
delay = rand() ® ({1 << BE} -
timex 3Z20us (delayl);

aelse
C8H_=z = 0;
=tate = 33F=mend (ITHOMCCR} ;
C5-45.1] S53Fmend {3EOP) ;
fan_x = 1;
=ent = (=tate >> 3};
putstring {"\rn State: "};

puthe=i{=tate}) ;

if {!=ment]

i

1:;

0

delay = rand(} & {(1 << BE) — 1};

ME = ME + 1;

if (BE == BEMa=);
el=e BE+;
if (HE »» HEMax)
[

failure = 1;
pu
1

lmm t;:e:_EEEus:dEl;y];

1

return;

1

woid tizer_EZDus{in: delay)
[
tmrll = —3*delay;

putstring (" THMROL: "} ;
puthex { tmrll) ;
putci' "};

putint {delay) ;
CEMATHMR. = 1; ff TimezrO interrupt

raturn;

tatring (" FAILURE).z'\n"™); //3TART CHECKING H

EHAEBLED

57

(4) Data Sheets

Microcontroller:
http://www.microchip.com/stellent/idcplg?IdcService=SS GET PAGE&nodeld=1335&
dDocName=en010304

Chipcon:
http://www.chipcon.com/files/CC2420 Data Sheet 1 4.pdf

H-bridge driver:
http://www.datasheetcatalog.com/datasheets pdf/A/3/9/4/A3940.shtml

Initial Tecel H-bridge board:
http://www.tecel.com/d200/

Linear Regulators:
http://www.national.com/pt/LM/LM1117.html

58

https://webmail.nd.edu/horde/util/go.php?url=http%3A%2F%2Fwww.microchip.com%2Fstellent%2Fidcplg%3FIdcService%3DSS_GET_PAGE%26nodeId%3D1335%26dDocName%3Den010304&Horde=25f5b6808d32a812509186be10433f1b
https://webmail.nd.edu/horde/util/go.php?url=http%3A%2F%2Fwww.microchip.com%2Fstellent%2Fidcplg%3FIdcService%3DSS_GET_PAGE%26nodeId%3D1335%26dDocName%3Den010304&Horde=25f5b6808d32a812509186be10433f1b
https://webmail.nd.edu/horde/util/go.php?url=http%3A%2F%2Fwww.chipcon.com%2Ffiles%2FCC2420_Data_Sheet_1_4.pdf&Horde=25f5b6808d32a812509186be10433f1b
https://webmail.nd.edu/horde/util/go.php?url=http%3A%2F%2Fwww.datasheetcatalog.com%2Fdatasheets_pdf%2FA%2F3%2F9%2F4%2FA3940.shtml&Horde=25f5b6808d32a812509186be10433f1b
https://webmail.nd.edu/horde/util/go.php?url=http%3A%2F%2Fwww.tecel.com%2Fd200%2F&Horde=25f5b6808d32a812509186be10433f1b
https://webmail.nd.edu/horde/util/go.php?url=http%3A%2F%2Fwww.national.com%2Fpf%2FLM%2FLM1117.html&Horde=25f5b6808d32a812509186be10433f1b

