

FFiinnaall DDooccuummeennttaattiioonn::
TThhee DDeevveellooppmmeenntt ooff aann

AAuuttoonnoommoouuss HHoovveerrccrraafftt
SSyysstteemm

Team Calvin
Matthew Buckle

Mario Chiu
Jeffrey Spieldenner
Clement Suhendra

TTaabbllee ooff CCoonntteennttss

Introduction
1. The Problem
2. System Requirements
3. High Level Description

Detailed Project Description

1. System Theory of Operation
2. System Block Diagram
3. The Microcontroller Board Subsystem
4. The H-Bridge Subsystem

System Integration Testing

1. How Did We Test It?
2. Did Our Testing Verify the Design Requirements?

Users / Installation Manual

1. Installation
2. Setup
3. How Do I Know That It Is Working?
4. Hovercrafting for Dummies

Conclusion

Appendix

1. The Gantt Chart
2. Hardware
3. Software
4. Data Sheets

 2

IInnttrroodduuccttiioonn

((11)) TThhee PPrroobblleemm

 The overall goal of this project was to design and construct a swarm of three
hovercrafts which would advance along a predefined path of four waypoint beacons. The
swarm would progress by following a leader hovercraft, which would be responsible for
following the waypoints, and avoiding collisions with each other. Multiple questions
needed to be pondered before progressing with the project: How would the hovercrafts
recognize the waypoint beacons? How would they navigate towards the beacons? How
would they know when they reached a given beacon? What would be used as waypoints?
The further we delved into these questions, the more complex our system became.

 Two main ideas were discussed to solve the problem of waypoint signal
recognition and control of the hovercraft: using a system of two Telos motes on either
side of the hovercraft in a Master and Slave combination sending a signal to a series of
relays which would control the thrust motors, or using a system of two Chipcon receivers
attached to a microcontroller board with an H-bridge controlling each motor. Both of
these strategies have their positives and negatives. The Telos motes are relatively simple
to use, but are expensive and can only control the hovercraft motors via a series of
switches (thus limiting the ways in which the hovercraft can be controlled). The Chipcon
receivers and microcontroller system is inexpensive and allows more versatility in
controlling the motors of the hovercraft, but learning how to use a microcontroller is slow
and tedious work. After becoming frustrated with the control limitations offered by the
Telos Mote system, we decided to move forward with the customizable options that
microcontroller system offered.

 Despite the fact that we abandoned the idea of using the Telos motes as the
receivers on the hovercraft that would be used to control the thrust motors, we decided to
continue to use them as the waypoint beacons from which the hovercraft system would
receive its various signals. Although the motes were not the ideal instruments to control
the hovercraft due to the limitations mentioned above, they had multiple properties which
made them perfectly suited to be the waypoint beacons. The ease of (re)programming the
strength and period of the signals being sent, their small size, and the LEDs embedded on
the board (which we could program to give a visual of when a given signal was being
transmitted) were all properties which would prove to be beneficial as we began to test
our system.

((22)) SSyysstteemm RReeqquuiirreemmeennttss

The hovercraft system must…

 3

• be rigid and stable
• be able to track its target
• be able to determine if the beacon is to its right or to its left
• not collide with other hovercrafts or waypoint beacons
• be able to differentiate between attract and repel signals
• recognize when it has reached the target beacon
• know what to do if the next beacon’s signal is not in range
• be able to vary the speed of its thrust motors

The hovercraft system must be rigid and stable

Any system that can be expected to perform at its peak in an outdoor setting must
be able to withstand the wear and tear that such a setting can be expected to produce. As
such, care had to be taken to ensure that our hovercraft system was durable enough to be
able to maintain its functionality in a less than ideal setting, and yet still be light enough
to be able to hover well.

There are two main components that make up the body of a hovercraft: the chassis

and the skirt. Even with the most careful of planning, the hovercraft system will
occasional collide into foreign objects, thus its chassis must be able to withstand these
impacts and yet still continue on its mission. Even though it is hovering off the ground,
the skirt will still occasionally come into contact with a course surface, thus it must not
be able to tear easily. Given these requirements, we decided to create the chassis out of
corrugated plastic sheets, a material that is very rigid and yet still lightweight. Our first
skirts were made out of a lightweight vinyl material; however, we were unable to find the
same product to produce more skirts. Due to this, we created our other skirts out of heavy
duty garbage bags, which performed similarly to the vinyl skirts when attached to the
hovercrafts.

The hovercraft system must be able to track its target

 Whether it is the leader tracking a waypoint beacon, or the pursuers following the
leader, the hovercrafts must know what their specific target is and must be able to move
towards it. To achieve this goal, we implemented an “attractive” signal in the waypoint
beacons and in the leader’s Chipcons that the hovercrafts could receive and track.

The hovercraft system must be able to determine if the beacon is to its right or to its left

 Given that the hovercraft is expected to be an autonomous system, it must be able
to steer itself in the direction of the targeted waypoint beacon or leader hovercraft. The
first step in achieving this is determining from which direction the signal is coming. This
was accomplished by installing a Chipcon receiver on each side of the hovercraft and by
placing a parabolic aluminum shield behind each Chipcon. These aluminum shields serve
two purposes: to focus the signal on the receiver that is closest to the beacon, and to
weaken the signal received by the beacon that is further away from the beacon (as the

 4

signal has to pass through at least one shield, depending on the positioning of the beacon
in relation to the hovercraft).

The hovercraft system must not collide with other hovercrafts or waypoint beacons

 For any swarm to operate at its peak efficiency, care must be taken to ensure that
the individuals who make up the swarm avoid coming into unwanted physical contact
with each other and with their targets. As such, we installed “repellant” signals1 in the
waypoint beacons and in the all of hovercrafts’ Chipcons. After receiving these signals,
the hovercrafts were programmed to take evasive action in order to avoid a collision.

The hovercraft system must be able to differentiate between attract and repel signals

 Since there could be two distinct and opposite signals being received by the
Chipcon at any given time, the hovercraft system must be able to differentiate between
them. To achieve this, a variable called “beacon_type” was placed into the packet2.
Whenever a signal is received by a Chipcon, it immediately determines whether the
beacon type is attractive or repellant, and makes its control decisions based upon this
determination.

The hovercraft system must recognize when it has reached the target beacon

 For the hovercraft swarm to progress from beacon to beacon, the leader must be
able to recognize when it has successfully approached its current target beacon. This is
accomplished through the use of the waypoint beacons’ repellant signals as well as the
waypoint beacons’ individual identification numbers. The intelligence of the leader
hovercraft starts by looking for beacon number one. When it receives a user-defined
number of repel signals from this beacon, it “knows” that it has successfully reached the
target, and moves on to the next waypoint.

The hovercraft system must know what to do if the next beacon’s signal is not in range

 As mentioned above, when the leader hovercraft reaches the repel signal of the
target beacon, it immediately begins to look for the next waypoint. However, what if the
next waypoint’s signal is not in range? In this case, the hovercraft will remain at its
current target beacon. When the repel signal is in range, it will move away from the
beacon, and when the repel signal is out of range, it will move back towards it. One
possible addition that can be made is to have the hovercraft look for any attractive signal
in range and react accordingly instead of moving around a single beacon.

The hovercraft system must be able to vary the speed of its thrust motors

1 The repellant signal is significantly weaker than the attractive signal.
2 The “packet” is the data transmitted by the Telos waypoint beacons and the Chipcon. Data in the packet
includes the beacon_id (the number of the beacon), Beacon_type (attractive or repellant), and a timestamp
(used to ensure that the signal being compared by the right and left Chipcon on any given hovercraft was
sent at the same time).

 5

 One of the major benefits of using the Chipcon / Microcontroller / H-bridge
subsystem versus the Telos / Switch subsystem is the more fine-tuned control that is
possible. The motors can move forward, backwards, and have varying speeds via
relatively simple software commands. By taking advantage of the speed control offered
by the H-bridges, we can have the hovercraft move faster while far from the beacon, and
slower as it approaches. This level of speed control will allow the hovercraft to maintain
stability3 while maneuvering around the target beacon.

((33)) HHiigghh LLeevveell DDeessccrriippttiioonn

The successful completion of our project had the following goals at the time of
conception:

• Waypoint navigation system
• Three-point control
• Creation of an H-bridge to allow for linear control
• Navigation of waypoint system by two independent hovercrafts
• Obtaining materials for and construction of two more hovercrafts
• Navigation of waypoint system by four hovercrafts working as a swarm
• Transfer of system from one which uses Telos motes to one that utilizes Zigbee

transmitters and microcontrollers
• Possible change from two thrust fan system to a single fan with a controllable

rudder

The following will describes the goals individually and includes a short assessment of the
goal.

Waypoint Navigation System

The purpose of this goal was to allow a single hovercraft to traverse a series of
over two transmitting beacons (waypoints). As all of the beacons send their signals
throughout the test, the hovercraft needs to be able to recognize the signals sent by the
current waypoint that it is looking for. It will know when it has reached the waypoint
when it receives a repel signal, and then will begin to look for the next one. The process
starts over from the beginning once the final waypoint has been reached. We successfully
completed this goal.

3 Since the hovercraft is a low friction system, it loses less momentum when the thrust is turned off. Thus,
while turning at high speeds, the hovercraft will make very wide turns – not what we want when it is
approaching the target beacon.

 6

Three Point Control

In this goal, the control of the hovercraft was be improved. Previously, the control
scheme was a relatively simple “Bang-bang” control, in which the hovercraft turns in the
direction of whichever receiving beacon (Master on the left side, Slave on the right side)
receives a stronger signal from the waypoint transmitter. In three point control, the both
the left and the right thrust fans will be fired almost simultaneously (the current circuitry
does not allow for both to be on at the same time) if the transmitter is directly in front of
the hovercraft. This goal was superseded in importance by the H-Bridge control,
discussed below.

μC

Zigbee Zigbee

H-B H-B

μC

Zigbe

Zigbe

H-B
H-B

μC

Zigbe Zigbe

H-B H-B

μC
Zigb

Zigb

H-B

H-B

 7

Creation of H-bridge to Allow for Linear Control

Through the creation of an H-bridge circuit, we are able to vastly improve the
control of the hovercrafts. Rather than simply having Bang-bang or Three-point control
(which have obvious limitations), the hovercrafts will be able to head towards the beacon
with a much more control, less oscillations in motion and in a tunable manner. We
successfully completed this goal.

Navigation of Waypoint System by Two Independent Hovercrafts

To allow two (or more) independent hovercrafts to successfully navigate the

waypoints, we must ensure that no collisions take place between them as they move
around the testing area. In order to prevent this, we installed a repellant beacon in one (or
both) of the motes on the hovercraft which will allow other hovercrafts to recognize when
it is approaching another hovercraft and thus avoid colliding with it. This goal works but
not reliably so we will be leaving out for our demonstration.

Obtaining Materials for and Construction of Two More Hovercrafts

In order to proceed with further testing, it was necessary to build more
hovercrafts. As our previous source for materials (www.hovercraftmodels.com) has
temporarily gone out of business, we must use other suppliers to provide us with the
individual materials needed to construct them. We successfully found our materials for
the hovercrafts we built.

Navigation of Waypoint System by Four Hovercrafts Working as a Swarm

The end of this goal was to have four hovercrafts traversing the waypoint system

in unison. To achieve this, we needed to designate one hovercraft as the leader, and have
the other three follow it from beacon to beacon. An attractive signal sent from one of the
motes on the leader will allow the other three to successfully follow it. This goal ended
up being outside the scope of our project as demanded by our customer Dr. Bauer.

Replacement of Telos motes with Zigbee Transmitters and Microcontrollers

One important goal for this project was to remove the reliance on Telos motes,
which are very expensive and have shown to be unreliable. The replacement was to be a
microcontroller board with a couple of Zigbee transmitters. We accomplished this by
creating a board with a PIC18F4620 microcontroller and two CC2420 transceiver chips.

Implementation of a Single Thrust Fan / Rudder Combination

With the implementation of an H-bridge, it is possible to exchange our current

thrust fan configuration with one that can more properly utilize the benefits of the H-
bridge. By limiting the hovercraft to one thrust fan, the longevity of the battery should

 8

improve. However, during our project we decided that this had no obvious benefits to the
performance of the system, given that battery life was no longer an issue.

DDeettaaiilleedd PPrroojjeecctt DDeessccrriippttiioonn

((11)) SSyysstteemm TThheeoorryy ooff OOppeerraattiioonn

 The overall Autonomous Hovercraft System is made up of four separate, but
integrated, subsystems: the microcontroller board, the H-bridge, the hovercraft, and the
waypoint beacons. Each of these four subsystems provides a vital role in the success of
the Autonomous Hovercraft System. The microcontroller board contains both Chipcon
transmitters, which are responsible for receiving packets from the beacons, and the
microcontroller, which is responsible for taking the data received by both Chipcons,
making control decisions based upon this information, and sending these control
decisions to the two H-bridges. The H-bridges take the command sent by the
microcontroller and directly manipulate the speed and direction of the two thrust fans.
The hovercraft houses the above two subsystems, as well as the two thrust motors and the
lift motor. The beacon subsystem is responsible for sending the signals that the
autonomous hovercraft is tracking. While the complexity of each of the four subsystems
is not the same, the success of the entire project is reliant on smooth transitions between
each of them.

 The entire Autonomous Hovercraft System begins with the beacon subsystem.
Each beacon has three key components: the period4, the attractive signal strength, and the
repellant signal strength5. The smaller the time the period is, the more exact the
Autonomous Hovercraft System can be in tracking the target beacon. If the period is too
small, however, and there are too many beacons in range sending signals, the airwaves
can become cluttered and the Chipcons can lose packets. If there are few signals being
sent in the immediate area, a period of 100 ms works well, but if it is a more complex
system of beacons and hovercrafts, a period of 200 or 250 ms is more appropriate.

 The hovercraft subsystem is responsible for housing the microcontroller and H-
bridge subsystems, as well as the thrust and lift motors. The body consists of corrugated
plastic, a strong but lightweight material that is easy to cut and shape into the pieces that
are needed. The skirt can either be made out of a lightweight vinyl material or heavy duty
trash bags, either work equally well. The microcontroller board is mounted in a slit
towards the front of the hovercraft chassis: the microcontroller itself and most of the
circuitry are hidden inside of the body of the hovercraft, while the two Chipcon boards
and their respective aluminum shielding are exposed on the exterior. The H-bridges, on
the other hand, are more towards the back the hovercraft. Like the circuitry of the

4 The period value is inputted in milliseconds
5 Signal strength values are inputted as integers ranging from 0 (weakest) to 31 (strongest).

 9

microcontroller board, they are hidden inside the body of the hovercraft. All that is
visible are the wires that extend from the H-bridges to the respective thrust motors that
they control, located on a platform raised about the body. The lift fan is also located
inside the body, in between the microcontroller board and the H-bridges.

 The microcontroller subsystem does the brunt of the work of the Autonomous
Hovercraft System. With dimensions of 2.25” by 12”, it is long enough so that both of the
Chipcon receivers and their aluminum shielding can protrude from the body of the
hovercraft, while the remainder of the circuitry remains comfortably inside. When a
beacon transmits a signal, both Chipcon receivers obtain the packet, and an interrupt is
fired. When this occurs, the microcontroller retrieves the data (beacon type, beacon id,
timestamp, and RSSI6) from both of the packets, decides whether the hovercraft should
move towards or away from the beacon depending on the strength of the repel signal
received, decides which direction to turn by comparing the RSSI values of both of the
Chipcons, and, if the RSSI values are very close (plus or minus 2 dbm) decides how fast
to move based upon the strength of the RSSI value.

 The H-bridge is the final subsystem of the Autonomous Hovercraft System. After
deciding on the direction and speed of the hovercraft, the microcontroller calls a function
and brings the H-bridge into play. The H-bridge, mounted in the rear of the body of the
hovercraft, receives the commands sent by the microcontroller and directly controls the
movement (forward, reverse, or stopped) and speed (via the duty cycle) of its specific
motor. The hovercraft moves in the direction specified by both of the H-bridges, and the
entire process is repeated as the next set of packets is received by the Chipcons.

6 Signal strength of the packet

 10

((22)) SSyysstteemm BBlloocckk DDiiaaggrraamm

Block Diagram of the Leader Hovercraft

Leader Hovercraft
receives a packet from the

target beacon

What distance is it
from the target

beacon?

Move to beacon at a
higher speed

Move to beacon at a
slower speed

If (Repel signal from beacon
> threshold)

Else if (Attractive signal
received from target
beacon)

Far Close

Increment the counter

Has it received a
signal from the next

beacon?
Move away from the

beacon

Make the next beacon
the target beacon

Yes

No

Counter < Counter Threshold

Counter = Counter Threshold

 11

Block Diagram of the Follower Hovercrafts

Follower
Hovercraft

receives a packet

What distance is
it from the Leader

Hovercraft?

Move to leader at
a higher speed

Move to leader at
a slower speed

Move away from
the Leader
Hovercraft

Move away from
the beacon

If (Repel signal
from beacon >
threshold) Else if (Repel signal from

leader > threshold)

Else if (Attractive
signal received
from leader)

Far Close

((33)) TThhee MMiiccrrooccoonnttrroolllleerr BBooaarrdd SSuubbssyysstteemm

The microcontroller used in our board was Microchip’s PIC18F4620. We chose
this microcontroller because of our familiarity with it, resulting from the first semester
Senior Design class and the tasks we carried out in the class. Additionally, it has 35
input/output pins which we found to be fitting under the design we were pursuing. It is
connected to an external 10 MHz crystal oscillator that provides the clock timing.

 The functionality of the board includes having a serial interface which we use to
communicate to the computer via the HyperTerminal program. This is meant mostly for
troubleshooting and testing. The board also has an LCD display which is also meant for
troubleshooting and testing, especially in a testing environment where connecting the
board to a computer is not feasible. For the radio communications we use two CC2420,
by Chipcon, and interface to them via the SPI functionality of the microcontroller. The
CC2420 communicate via Zigbee (IEEE 802.15.4) at the 2.4 GHz band. The
microcontroller also interfaces with the two H-bridges that drive the thrust motor on the
hovercraft. Below is a schematic of what the pin connections look like on the board itself.
This diagram may come in handy when troubleshooting using a digital analyzer or a
scope.

 12

JP1
A0 HB1 FAULT GND
A1 HB1 LONG LCD E0
A2 HB1 RESET PRGMR CCA (R) B7
A3 HB1 PHASE PRGMR CCA (L) B6
A4 HB2 FAULT HB2 PHASE B5
A5 HB2 LONG FIFO RIGHT B4
A6 CLK LIFT FAN B3
A7 CLK FIFOP RIGHT B2

V3.3 FIFO LEFT B1
GND FIFOP LEFT B0 JP2

JP3
C0 HB2 RESET GND
C1 PWM HB1-EN E2
C2 PWM HB2-EN LCD D7
C3 SPI SCLK LCD D6
C4 SPI SO LCD D5
C5 SPI SI LCD D4
C6 CSN RIGHT D3
C7 CSN LEFT D2
E1 LCD VREG BOTH D1

GND RESET BOTH D0 JP4

SERIAL INTERFACE
SERIAL INTERFACE

SERIAL INTERFACE

µController

Microcontroller and Code

The microcontroller is programmed via an external programmer, provided by Dr.
chafer

Our code is structured so that we have a main file and several libraries that the
ain fi t

the

In order to find the correct settings for a microcontroller function, be it interrupts,
mers,

S , which loads all the code into the flash memory in the microcontroller. We used
the SourceBoost software to code, compile and link our code and Microchip software is
used to program the board. Our board is programmed in the same manner as the board
use by Dr. Schafer in his Senior Design class. All the necessary software is available in
all the computers found in the learning center.

m le refers to. Our main file is called hovercraft.c and it contains the algorithm tha
we want the hovercraft to run, and anything directly related to it. EESDlib.c contains all
the routines that deal with the serial interface and the LCD display. Our version of this
file is built upon the version provided by Dr. Schafer for the Senior Design class, but
most of the serial interface code was written by Team Calvin. Hbridelib.c contains all
functions used to control both H-bridges. Both PWM and pin settings for the H-Bridges
are defined here and speed and directional control happens with the functions included in
this file. cc2420lib.c contains all the functions that deal with the configuration and use of
the CC2420 transceiver chips. It also contains the code that deals with setting up the SPI
in master mode to and to use this interface. cc2420.h contains all the definitions used in
the c file, including definitions obtained from the CC2420 datasheet.

ti SPI interface or I/O the first step is exploring the PIC18F4620 datasheet. All the
information necessary to set up any capability is found there and the simplest way to do
this is by first looking for a particular function and finding a table like the example

 13

below. This table list all the registers associated with the SPI interface, and it serves as a
guide to keep exploring the datasheet to configure the capability correctly.

A few important considerations addressed in the code setting up interrupts

PI Interface

triggered by timers and by certain I/O pins, configuring all the pins as inputs or outputs as
necessary, obtaining a PWM signal with a variable duty-cycle and configuring the SPI
and serial interfaces used in by other devices.

S

The Serial Peripheral Interface is a type of communications interface that is used

by the CC2420 and that the PIC18F4620 has capability of handling. It works under a
Master/Slave configuration where the Master initiates the communications and the slave
responds to these prompts. The communication is handled by four I/O pins: serial clock
(SCK), serial output (SO), serial input (SI) and a chip select (CSN). The clock is used to
synchronize the two devices involved, the input and output transmit the bits and the chip
select activates the slave and prompts the communication to take place. Below is a
diagram of how the SPI works in the PIC18F4620. In our board both CC2420s interface
with the microcontroller via the SPI, CSN pins are enabled-low.

 14

 As shown in the diagram above, all SPI communications are handled by the
SSPBUF register. All messages to be sent are to be loaded here and all messages received
are read here as well. As soon as one byte is sent out from the SSPBUF, the slave loads
another byte into the SSPBUF. This byte can either be an acknowledgement of
communication or a piece of data, depending on the device and what is sent to it.

CC2420

 The CC2420 by Chipcon is a single chip ZigBee system compliant with the IEEE
802.15.4 set of standards. It is built for low power, low voltage and low data rate wireless
applications. As mentioned earlier, it interfaces with the microcontroller via SPI and we
felt that it would be easier to interface with this chip than with an alternative that used a
serial interface. SPI timing considerations are well illustrated and addressed in the
CC2420 datasheet.

 The most basic commands of the CC2420 are carried out with what is called
‘command strobes’. They are single-byte commands that are use to initialize and
configure the CC2420 as well as to carry out functions such as transmission. Immediately
after a command strobe is issue a status byte is return. However, the status byte does not
reflect the current command strobe, only the previous ones. The SNOP command, which
does nothing else than return a status byte is useful here. For further information as to the
content of the status byte, refer to the CC2420 datasheet, page 29. The list of command
strobes as defined in the CC2420 datasheet is shown below.

 15

 The CC2420 also contains registers that store configuration information, among
other things. Through these registers you can do things such as choosing the channel to
be used for transmission (there are 11 channels available). All register store two bytes of
information and most of these registers are both readable and writable. A comprehensive
list of registers and their individual functions is given in the CC2420 datasheet, starting
on page 63.

 The only two registers that are not two bytes long are the TXFIFO and the
RXFIFO. These are 128-byte FIFO registers (the first byte in is first byte out) and handle
the transmission and reception payloads. They are interfaced in the same manner that the
rest of the register but they have a few extra considerations to be taken into account. For
the RXFIFO, when a message is received the FIFO output pin in the microcontroller goes
high indicating that there is a packet in the register. If the length of the packet exceeds a
threshold number of bytes that is configurable in a register, then the FIFOP flag goes up.
In our code, this threshold is set to be the same length of the packets expected and an
interrupt flag goes up as soon as the packet is completely in the register. The first byte out
always indicates the length of the packet stored in the register and the next-to-last byte
indicates the RSSI value in 2’s complement. In our code we decided to disregard the
negative sign of the dB readings coming from the CC2420 for simplicity’s sake.

 The TXFIFO requires that the first byte written into is the length byte and that the
subsequent bytes comply with this length. If this is not the case a TX_UNDERFLOW is
reported in the status byte. As soon as the register is loaded with a packet, this can be

 16

transmitted issuing a STXON or a STXONCCA command. The main difference between
these two is that the latter will only transmit the packet if there are no other transmissions
taking place on the same channel (Clear Channel Assessment is successful). If
STXONCCA is not successful this can be read from the status byte received after
transmission. It is always recommended that the channel be assessed before any
transmissions. This can also be done by checking the CCA output pin in the CC2420
before any transmission; however we decided to go with the first strategy for our code.

 In order to have packet transmission compliant with the IEEE 802.15.4 set of
standards we had to implement the CSM-CA algorithm outline in the documentation of
the standard and illustrated by Figure 61 in that document. This algorithm basically
involves waiting a random number of back-off periods (time units) and to retry
transmission up to 4 times before considering the transmission a failure. For each new
try, the range of random back-off periods to wait grows. In our code this is implemented
by using timer0 as the timer that controls the waiting time between tries.

((44)) TThhee HH--BBrriiddggee SSuubbssyysstteemm

The system that we inherited from the summer project does not have a speed

control only directional control, which we strongly believe to be one of the causes why
the hovercraft is unstable. A series connection of 3 to 4 diodes is the only limiting factor
for the battery power to fully power the motor. Even with this setup, the speed of the
hovercraft is still considered to be fast and powerful. The directional control is based on
two relays circuits, which switch from one motor to the other. The switching is based on
the Telos motes reading of the beacons. The default switch is on the right motor. When
the readings of the signals of the beacons are the same, the hovercraft has to go forward
by switching the right and left motors back and forward. When it is stronger on the right
side, the hovercraft will solely turn on the right motor until the signals on the left side are
stronger than the right side, and so on.

As mentioned in the Introduction section, the H-Bridge subsystem provides a

better control of the motors. Not only that the H-Bridge offers a better directional
control, but also speed control that is not available on the previous system. To do so, we
make several numbers of decisions, such as the number of motors and parts (Power
Mosfet vs. Relays) to be used in the new system.

One of the options that we could have taken is using a servo to control one motor

with a rudder. Instead of doing this, we decide to keep
the two motors. This decision is made based on
research on the parts and the old hovercraft body
design. The trade off that we take into account is to
have more weight in the system, with the two
motors. While we save ourselves from creating a new
body design for the one motor option, which we think
would be more troublesome. Creating a new body

 17

design is not in our critical path. Thus going back to our proposal that we presented in
the fall, our goal for this project is to improve performance, which can be completed by
pairing a motor with an H-Bridge circuit.

What is an H-Bridge? A circuit diagram resembles the letter "H", consisting of

four-transistors. The load is the horizontal line, connected between two pairs of
intersecting lines. It is very common in DC motor-drive applications where switches are
used in the "vertical" branches of the "H" to control the direction of current flow, and
thus the rotational direction of the motor.

An H-Bridge circuit offers a lot more than the two relays circuits. H-Bridge can

run a motor not only forward, but also in reverse. In the early process of deciding
whether we are
pairing each motor
with an H-Bridge
circuit or not,
we find that
with this forward
and reverse
command
abilities, it would be better for us to use these abilities. By having one H-Bridge per
motor, we are expecting a better performance in a way that the hovercraft can make a
smoother, faster, and sharper turns. This is achieved by putting one motor forward and
the other reverse. We then combine this performance with the speed control, so that the
turns performed would not cause instability of the system. For example, for a right turn,
we turn on the right motor and put the left motor on reverse. With a lower speed, we
would be able to manage the torque created in a sudden turn. The directional algorithm
of the new system is still the same as the previous system. Decisions made by the
microcontroller are dependent to the reading of signals’ strength received by the Chipcon
radio chips. A forward action, both motors turn forward, is due to the same signal
strength received by the left and right Chipcon chips.

 We think the best additional feature that H-Bridge circuits offers to our project is
the speed control. Not being able to control the speed on the previous system is a big
disadvantage. This feature is achieved by firstly sending PWM signal to the motor,
provided by the microcontroller, and secondly inputting the percentage of duty cycle.
The higher the duty cycle, the faster the motor will go. A 100% duty cycle is equivalent
to what the previous system has, full power, not using PWM signal. By using low duty
cycle (10 – 20%), the hovercraft becomes more stable. For our final boards, we find that
in certain frequencies (over 1000 Hz) in our setup, we need to have a jumpstart. It is
sending a 100% duty signal for a couple milliseconds to start the motor and then
dropping it to a duty cycle less than 50%. In inputting the values, refer to the formulas of
‘pr2’ in the microcontroller data sheet.

 18

 In the process of creating of our own board, we started
by making a purchase of a 10-A H-Bridge from Tecel.com to
help us in getting a big picture idea. This part works very well
in a way that we can run the motor bi-directionally. What we
then realize is this Tecel board does not use an H-Bridge
driver, to drive the MOSFETs a programmable logic driver is
used. From the recommendation from Dr. Schafer, I start
looking at H-Bridge driver parts from Allegro Microsystem
Inc. They offer two different parts: a half-bridge driver, A3946, and a full-bridge driver,
A3940. The full-bridge part becomes our choice, because we want the capability to have
the motor to run forward and reverse, an upgrade from the inherited system.

 After building and testing the A3940 circuit on the datasheet in a breadboard (see
next page), I find this part to work and satisfy the requirements for the system. The only
problem in my testing environment is that there is not enough current to run the motor
from this circuit in the breadboard, but I can hear the motor is spinning on the inside.
The breadboard has a fuse of 1A, and from previous testing the motor at least need 7A.
The values of resistors and capacitors in the block diagram can be found in the datasheet.
Thus Dr. Schafer helps me in this testing process by building a PCB board so that I can
run the motor with enough current.

 This subsystem involves both software and hardware. The software is not as
complicated as the Chipcon subsystem. For the most part, the software for this
subsystem engages on setting values of the applicable registers internally in the
microcontroller and sending logic 0 or 1 to the H-Bridge board. The hardware for this
subsystem is consists of a full-bridge driver (A3940, mentioned above), four-MOSFET, a
number resistors and capacitors. The microcontroller board and the H-Bridge boards are
connected with a bundle of wire with 10-pin Molex pin connectors on the three boards

 19

Software
Generating PWM Signal
 This Microchip controller capability is implemented by setting the values of the
duty cycle register (CCPRxL and CCPxCON), timer control register (T2CON), and
PWM period register (PR2). CCPRxL and PR2 values are calculated from the PWM
duty cycle and period formulas in the PIC datasheet (Matlab code to calculate these
values, the function can be found in the Appendices section). In our final code, the
calculation is not implemented in the code. I use the Matlab code to obtain the values of
pr2 and CCPRxL and CCPxCON, and use the values in the duty cycle function.
PIC18F4620 is able to provide two PWM outputs in pin c1 and c2. Keep in mind that the
output of CCP1CON is in c2, while CCP2CON is c1.

For more details, this information can be found in Chapter 15, Capture/Compare/PWM
modules.
//1. Setting the pwm period by writing to the PR2 register = 0x9C (hex)
 pr2 = 156;

//2. Setting the pwm duty cycle by writing to the CCPRxL register and
CCPxCON<5:4> bits in this case CCPR1L & CCP1CON (with 40% duty cycle);
PWM Duty Cycle = 4.0192e-4 s

 ccpr1l = 125 >> 2;
 ccpr2l = 376 >> 2;
 //ccpr1l = 00011111b; //for 20% duty cycle
 //ccpr2l = 01011110b; //for 60% duty cycle

 //writing to CCP1CON
//5. Configuring the CCPx module for PWM operation (for PWM mode: 11xx)
 ccp1con.3 = 1;
 ccp1con.2 = 1;
 ccp1con.1 = 0;
 ccp1con.0 = 0;

 //writing to CCP2CON
 ccp2con.3 = 1;
 ccp2con.2 = 1;
 ccp2con.1 = 0;
 ccp2con.0 = 0;

//3. make the CCPx pin an output by clearing the appropriate tris bit
 trisc.2 = 0; //the output of CCP1 is c2, not c1
 trisc.1 = 0; //the output of CCP2 is c1

//4. set the TMR2 prescale value, then enable Timer2 by writing to
T2CON (TMR2 = 16 (00 = 1; 01 = 4; 1x = 16)
 t2con.1 = 1; //prescale value
 t2con.0 = 0; //prescale value

 t2con.2 = 1; //turning on timer2

 20

Sending signals to A3940

RESET. Control input to put device into minimum power consumption mode and to
clear latched faults. Logic “1” enables the device; logic “0” triggers the sleep mode. It is
internally pulled down via 50 k Ω resistor.
ENABLE. Logic “1” enables direct control of the output drivers via the PHASE input,
as in PWM controls, and ignores the MODE and SR inputs. It is internally pulled down
via 50 k Ω resistor.
MODE. Logic input to set the current decay mode. Logic “1” (slow-decay mode)
switches off the high-side MOSFET in response to a PWM “off” command. Logic “0”
(fast-decay mode) switches off both the high-side and low-side MOSFETs. It is internally
pulled down via 50 k Ω resistor.
PHASE. Motor direction control. When logic is “1”, it enables gate drive outputs GHA
and GLB by allowing current flow from SA to SB. When logic is “0”, it enables GHB
and GLA allowing current flow from SB to SA. It is internally pulled down via 50
kΩ resistor.
SR. When logic “1”, enables synchronous rectification; logic “0” disables the
synchronous rectification. It is internally pulled down via 50 k Ω resistor.
FAULT. Open drain, diagnostic logic output signal. When logic is “1”, it indicates that
one or more fault conditions have occurred. Use an external pull-up resistor to VREG5 or
to digital controller. Internally causes a coast when asserted. See also Functional
Description, next page.

 21

LONG. When logic is “1”, it selects long dead time between GHx and GLx transitions
of same phase. When logic is “0”, it selects short dead times. It is internally pulled down
via 50 k Ω resistor.

The possible ten modes of operations from the Truth Table are more than enough
for the performance that we want for the hovercraft. Hence with the limited amount of
pins that we are using and with the advice of Dr. Schafer, SR and MODE are set to be
high by leaving of the resistors, to open the connection to these input pins. The
schematic below is based on the functional block diagram above, with an addition of
jumpers so that user can choose to power the chip using the battery power from the
microcontroller or from the motor’s battery.

As a result, the control input signals that we are sending from the microcontroller

board are ENABLE (PWM signal), PHASE (directional), RESET (enabling the device),
FAULT (to avoid fault), and LONG (to set for a short dead time). For having two H-
Bridge boards, we need a total of 10 pins from the microcontroller.

 The commands algorithms are:
Forward: PHASE = 1; RESET = 1; FAULT = 0
Reverse: PHASE = 0; RESET = 1; FAULT = 0
Brake: Set Dutycyle = 0%

 Note: The pin connected to FAULT is supposed to be set as input, instead of
output. When these pins are set as inputs, a FAULT occurred. From checking the
voltages on the board and comparing it to the values on the Fault Responses table, I find
that the possible cause of this fault response is VREG13 undervoltage. The voltage
measured on that pin in this setup is 7 V, which is below the minimum of 12.6 V stated
on the datasheet. By setting FAULT as an output from the microcontroller to the H-
Bridge board, the fault response is no more, although the VREG13 is still 7V. Although
it sounds impossible to set a value on an output pin, this setup works fairly well.

 22

Hardware (schematics of both boards can be found in the Appendices section)

Part Description Quantity (per board)
Spade Plug 4
MOSFET N-Channel 60V, 50A 4
Resistor 0 ohm 4
Resistor 10K ohm 5
Resistor 39K ohm 3
Capacitor 1 microfarad 1
Capacitor 0.1 microfarad 3
Capacitor 0.47 microfarad 1
Double Row PCB Headers (Right Angle) 1
Dual Row Micro-fit Connectors (10-pin) 1

Setup for the 10-pin Molex connection between the H-Bridge board and the
microcontroller board

Pin Dr. Schafer’s H-Bridge Microcontroller Board
1 GROUND GROUND
2 RESET PHASE
3 ENABLE RESET
4 MODE LONG
5 VBB N/C
6 LONG ENABLE
7 PHASE N/C
8 SR N/C
9 FAULT FAULT
10 N/C VBB

How the Molex pins are connected (H-Bridge’s pin Microcontroller’s)

H-Bridge Microcontroller
1 1
2 3
3 6
4 N/C (5 or 7 or 8)
5 10
6 4
7 2
8 N/C (5 or 7 or 8)
9 9
10 N/C (5 or 7 or 8)

 23

Microcontroller board Pin Assignments for the H-Bridge (where the signals coming
from):

 Right Motor Left Motor
PHASE B5 (pin 38) A3 (pin 5)
FAULT A4 (pin 6) A0 (pin 2)
RESET C0 (pin 15) A2 (pin 4)
ENABLE C2 (pin 17) C1 (pin 16)

Subsystem Testing

 To ensure the functionality of the subsystem, different testing is performed. On
the hardware side, the 9-wire connections are tested using the functionality of Ohmmeter
on a DMM. The purpose of this testing is to make sure that the headers are placed
correctly on the slots, so then there won’t be signal missing in transmission. This same
test is also performed to ensure the connection on the microcontroller board. Since there
are two sets of 10-pin connectors, there are two sets of the signals being sent. By doing
this, I find out the set of signals is going to the left or right connector. There is no
software-focused testing, other than the SourceBoost Builder and Compiler.

 The actual test of the software is when I integrate the hardware with the software.
For input to the program, the hyperterminal is used. The microcontroller is connected
through a serial cable connection. Values such as duty cycle for speed control and set of
phase, reset, and fault for directional control can be set through the hyperterminal. For
the first couple of times, it is necessary to focus on the polarity of the motor. If you
command the motor to go forward and one or both of them are going on reverse, it means
that you either connect the wrong polarity of the motors to the board or switch the phase
values that are being sent to the motors. One more thing to keep in mind: the same
identical motor won’t run the same in the same setting and sometimes the motors need a
jumpstart. This can be done by starting with high percentage of duty cycle (above 50%)
for less than a second, then drop the percentage of duty cycle to achieve a more stable
system.

SSyysstteemm IInntteeggrraattiioonn TTeessttiinngg

((11)) HHooww DDiidd WWee TTeesstt IItt??

When working with wireless technologies, the testing environment is a very
important factor to consider in order achieving optimal results. Small areas with several
walls, such as a classroom or small lab, are bad testing environments for two reasons.
First, it doesn’t give much room for the hovercraft to maneuver, and second, there is large
probably of signal interference due to reflections. For this reason, we decided to take out

 24

testing to the Stepan Center in order to test in a larger environment and minimize
reflections.

((22)) DDiidd OOuurr TTeessttiinngg VVeerriiffyy tthhee RReeqquuiirreemmeennttss??

After testing the hovercrafts it was apparent that some of the requirements were
fulfilled, but others were not. All of the subsystems functioned properly independent of
the other, but when combined there were some issues. We believe that these issues
consisted mostly of software uncertainties that deal with timing and interrupts. This is
one possible reason why the overall system worked sometimes, but crashed at other
times. So the end result was that our system functioned inconsistently and there are still a
few kinks to be worked out.

However, we did demonstrate that we were able to build a stable and rigid hovercraft that
traveled fairly straight when both motors were commanded to move forward. This proves
that our weight distribution throughout the hovercraft was fairly consistent. We also
proved that the Chipcon radios in conjunction with the microcontroller serve as a very
consistent means with which to read and detect packets sent from a remote Telos beacon.
These measurements were more precise than the measurements taken by the hovercraft
fitted with Telos motes from last semester.

Also, we were able to show that with one H-bridge controlling one motor we were
able to provide much more control over the hovercraft than we ever could have had with
the switching circuitry of last semester. Last semester we were only able to achieve
“bang-bang” control by rapidly switching ON and OFF the motors to go straight, but now

 25

we are able to run both motors simultaneously which allows for a more precise beacon
locating machine.

Overall, the algorithms which prove the requirements are shown to be successful
in that the software is able to display information which verifies correct recognition of
packets and the steps that should be taken in order to accomplish the subsequent task.
However, the software was inconsistent in the manner in which it made the hovercraft
physically accomplish these goals. In other words, the “brain” was unable to make its
“legs” walk.

UUsseerrss // IInnssttaallllaattiioonn MMaannuuaall

((11)) IInnssttaallllaattiioonn

The creation of the hovercraft and installation of the electronics is fairly
straightforward. The stencil for the hovercraft base, chassis, and motor platform were
originally taken from an online hovercraft company at www.hovercraftmodels.com.
However, we deviated slightly from their design in order to accommodate our needs. For
example, we had to construct the chassis in such a way as to fit the width of the
microcontroller board and still have enough room to have the Chipcon antennae project
from the side. Also, the company’s design utilizes a servo-mechanical system for one
thrust fan for propulsion, but we changed to two thrust fans which we could more easily
control using an H-bridge circuit. The custom design and scaled measurements were
documented and are listed as an attachment.

After the proper plastic pieces have been cut out in accordance with the specified
measurements, they can take shape with the assistance of plastic screws to hold the
respective pieces together in a nice rigid structure. Note: the locations for the screws are
indicated on the hovercraft design drawings. Next, the skirt may be attached to the
underside of the hovercraft base using the same screws. The skirt can be purchased from
the website as part of a kit, but an alternative that works just as well is an extra-strength
plastic trash bag that should be cut to an appropriate size (a little longer and wider than
the hovercraft) and glued together with proper epoxy.

Finally, the motors may be attached. The lift motor is attached in the center of the
Top Deck of the base, and the two thrust motors are attached to the top of the motor
platform as indicated by the screw holes of the design drawings.

The microcontroller board is inserted under the “hood” of the hovercraft where it
fits nicely in designated slots on both sides of the chassis. Make sure that there is enough
room at the ends of the board to mount the shielding for the Chipcon radio. There are pre-
drilled holes on the board for mounting, however, it might be necessary to drill larger
holes in order to accommodate the larger screws needed for the right-angle mounting

 26

http://www.hovercraftmodels.com/

piece. The H-bridge boards can be mounted on the deck of the hovercraft base directly
beneath the motors in order to keep symmetry and better center of gravity.

((22)) SSeettuupp

Once the equipment is properly installed, you can begin preparing the hovercraft
for testing by placing the lithium polymer batteries on the hovercraft. One battery
supplies the lift fan, and the other supplies the two thrust motors. Keep in mind that you
would like to keep a well-balanced center of gravity, so positioning of the batteries are
very important to the dynamics of the system. Also, make sure that the batteries are
securely fastened to the hovercraft to avoid sliding of the components during operation.

Connect the terminals of the lift fan battery to a switch, and connect the terminals
of the thrust fan battery to each H-bridge board. Also, at this time you can connect the
10-pin molex connectors from the H-bridge to the respective microcontroller board
connector. And if you haven’t already done so, attach the Chipcon radios to each side of
the microcontroller board with the antenna facing closest to the edge of the board.

When you are ready to begin programming, insert the 9V battery onto the
microcontroller board and attach the programmer connector to the appropriate jumper on
the board. Also, if you would like to use the HyperTerminal for testing, then you will
need to also attach the serial port cable to the board. Open the SourceBoost software
program on your computer to write C code to be downloaded onto the microcontroller
board.

((33)) IIss IItt WWoorrkkiinngg??

Once the components are properly installed and set-up, you are then ready to
begin testing. Press the Reset button on the microcontroller board to start the program
over and check the results. If you observe strange results or if nothing happens, then
check to make sure that the programmer connector is attached in the correct orientation.
Also, it is a good idea to check that you are getting the proper supply voltage from the
battery on the microcontroller board. Otherwise, review your code to make sure your
initializations and functions are setup correctly.

If you have soldered your own board, then double-check the solder-joints to make
sure that you are not shorting out some of the connections. Use a DMM if necessary to
check voltages, resistances, et cetera.

 27

((44)) HHoovveerrccrraaffttiinngg ffoorr DDuummmmiieess

In order to become an expert in the art of “hovercrafting”, it is essential that you
familiarize yourself with the microcontroller in all its glory. Thoroughly complete the
Task Assignments given throughout the semester in order to gain a better understanding
of the processes involved, and it will help to serve as a tutorial to learning the ropes.

Download the microcontroller datasheet from the web to gain some insight into
which pins are responsible for which actions and how they can be used. And while you’re
at it, download the datasheets for other major components to understand how the pieces
work together to create the whole system.

CCoonncclluussiioonn

Going into the project, we had targeted a goal of having three swarming
hovercrafts traversing a series of four waypoints. To achieve this, we planned
on building a microcontroller board with two Zigbee transceivers which would
control the thrust fans by sending commands to two H-bridges that were based
upon the differences in received signal strength by the Zigbee transceivers. To
accomplish this, we split the project into two main subsystems – the
microcontroller and the H-bridge subsystem. The majority of the semester was
spent researching how to build and program both devices, and by the end of the
term, we had both subsystems working independently of each other. We when tried
to run the Hovercraft system, however, we ran into problems.

 For some reason, when the microcontroller and H-bridge subsystems were
connected, the Zigbee transceivers would arbitrarily stop receiving packets at
varying times and the system would freeze. When disconnected, the
microcontroller subsystem would successfully execute all of our code. The
better part of a week was spent trying to determine the cause of the lock-up,
but we were unsuccessful in achieving the goal that we had marked for ourselves
at the beginning of the year. Given the tests of the two individual subsystems,
we hold that this new system will perform much better than the old hovercraft
system - which relied on bang-bang control – once the bug is fixed. We hope
that the information provided in this report has included enough information so
that whoever follows us in working on this project can quickly learn from our
successes and our failures, and determine the communication problem between the
H-bridge and the microcontroller subsystems.

 28

AAppppeennddiixx
((11)) TThhee GGaanntttt CChhaarrtt

The complete file can be found on the website or the file bucket CD.

((22)) HHaarrddwwaarree
H-Bridge Board Schematic

 29

H-Bridge Schematic

 30

H-Bridge Board Schematic

 31

Microcontroller Board Schematic

 32

Microcontroller Board Design

 33

Hovercraft Body Design

 34

 35

((33)) SSooffttwwaarree
Hovercraft.c

 36

 37

 38

 39

HBridgelib.c

 40

 41

 42

 43

 44

cc240.h

 45

 46

cc240lib.c

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

((44)) DDaattaa SShheeeettss

Microcontroller:
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1335&
dDocName=en010304

Chipcon:
http://www.chipcon.com/files/CC2420_Data_Sheet_1_4.pdf

H-bridge driver:
http://www.datasheetcatalog.com/datasheets_pdf/A/3/9/4/A3940.shtml

Initial Tecel H-bridge board:
http://www.tecel.com/d200/

Linear Regulators:
http://www.national.com/pf/LM/LM1117.html

 58

https://webmail.nd.edu/horde/util/go.php?url=http%3A%2F%2Fwww.microchip.com%2Fstellent%2Fidcplg%3FIdcService%3DSS_GET_PAGE%26nodeId%3D1335%26dDocName%3Den010304&Horde=25f5b6808d32a812509186be10433f1b
https://webmail.nd.edu/horde/util/go.php?url=http%3A%2F%2Fwww.microchip.com%2Fstellent%2Fidcplg%3FIdcService%3DSS_GET_PAGE%26nodeId%3D1335%26dDocName%3Den010304&Horde=25f5b6808d32a812509186be10433f1b
https://webmail.nd.edu/horde/util/go.php?url=http%3A%2F%2Fwww.chipcon.com%2Ffiles%2FCC2420_Data_Sheet_1_4.pdf&Horde=25f5b6808d32a812509186be10433f1b
https://webmail.nd.edu/horde/util/go.php?url=http%3A%2F%2Fwww.datasheetcatalog.com%2Fdatasheets_pdf%2FA%2F3%2F9%2F4%2FA3940.shtml&Horde=25f5b6808d32a812509186be10433f1b
https://webmail.nd.edu/horde/util/go.php?url=http%3A%2F%2Fwww.tecel.com%2Fd200%2F&Horde=25f5b6808d32a812509186be10433f1b
https://webmail.nd.edu/horde/util/go.php?url=http%3A%2F%2Fwww.national.com%2Fpf%2FLM%2FLM1117.html&Horde=25f5b6808d32a812509186be10433f1b

